1913: Henry Ford and the Assembly Line

Realizing that he'd need to lower costs Henry Ford (Ford Motor Company) was inspired to create a more efficient way to produce his cars. Looking at other industries he and his team found four principles, which furthered their goal: interchangeable parts, continuous flow, division of labor, and reducing wasted effort.

The use of interchangeable parts meant making the individual pieces of the car the same every time. Therefore the machines had to be improved, but once they were adjusted, they could be operated by a low-skilled laborer. To reduce the time workers spent moving around Ford refined the flow of work in the manner that as one task was finished another began, with minimum time spent in set-up. Furthermore he divided the labor by breaking the assembly of the legendary Model T in 84 distinct steps. Frederick Taylor, the creator of "scientific management" was consulted to do time and motion studies to determine the exact speed at which the work should proceed and the exact motions workers should use to accomplish their tasks.

Putting all those findings together in 1913 Ford installed the first moving assembly line that was ever used for large-scale manufacturing. His cars could then be produced at a record-breaking rate, which meant that he could lower the price, but still make a good profit by selling more cars. For the first time work processes were largely automated by machinery.

TEXTBLOCK 1/1 // URL: http://world-information.org/wio/infostructure/100437611663/100438659335
 
Fiber-optic cable networks

Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the World Wide Web.

Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Alexander Graham Bell might have not envisioned when he transmitted the first words - "Mr. Watson, come here. I want you" - over a copper wire.

Copper wires will not come out of use in the foreseeable future because of technologies as DSL that speed up access drastically. But with the technology to transmit signals at more than one wavelength on fiber-optic cables, there bandwidth is increasing, too.

For technical information from the Encyclopaedia Britannica on telecommunication cables, click here. For technical information from the Encyclopaedia Britannica focusing on fiber-optic cables, click here.

An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click here for reading.

Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click here for reading.

A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the International Cable Protection Committee.

For maps of fiber-optic cable networks see the website of Kessler Marketing Intelligence, Inc.

http://www.britannica.com/bcom/eb/article/4/0...
http://www.britannica.com/bcom/eb/article/4/0...
http://www.wired.com/wired/archive/4.12/ffgla...
http://www.pretext.com/mar98/features/story3....
INDEXCARD, 1/1