History: European Tradition

Only in Roman times the first rights referring to artistic works appeared. Regulations resembling a lasting exclusive right to copy did not occur until the 17th century. Before copyright was a private arrangement between guilds able to reproduce copies in commercial quantities.

In France and Western European countries "droits d'auteur" or author's rights is the core of what in the Anglo-American tradition is called copyright. Such rights are rooted in the republican revolution of the late 18th century, and the Rights of Man movement. Today in the European system the creator is front and center; later exploiters are only secondary players.

France

During the 18th century France gradually lost the ability to restrict intellectual property. Before the Revolution, all books, printers and booksellers had to have a royal stamp of approval, called a "privilege". In return for their lucrative monopoly, the French guild of printers and booksellers helped the police to suppress anything that upset royal sensibilities or ran contrary to their interests. Still there were also a whole lot of underground printers who flooded the country with pirated, pornographic and seditious literature. And thousands of writers, most at the edge of starvation.

In 1777 the King threatened the monopoly by reducing the duration of publisher's privileges to the lifetime of the authors. Accordingly a writer's work would go into the public domain after his death and could be printed by anyone. The booksellers fought back by argumenting that, no authority could take their property from them and give it to someone else. Seven months later, in August 1789, the revolutionary government ended the privilege system and from that time on anyone could print anything. Early in 1790 Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet proposed giving authors power over their own work lasting until ten years after their deaths. The proposal - the basis for France's first modern copyright law - passed in 1793.

TEXTBLOCK 1/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659414
 
Credibility

The magic word is credibility.

NATO took away part of its credibility by extending more and more the definition of military facilities, which where to be destroyed in order to end the Serb power.

Disinformation can mean leaving out important informations. Telling lies is not the only method of disinformation. The not telling also creates thoughts and delegates them into certain directions, whereas other models of thinking are left out.

Like this, the deaths on the own side are adjusted downwards whereas the victims of the enemy are counted proudly - as long as they are not civilians. The post-Gulf War period demonstrated how the population reacts if the number of innocent victims is much higher than expected. It was the fact of those numbers that provoked the biggest part of the post-war critique.

The media in democratic states tend to criticize this, which does not mean that they always want to be free of governmental influence. They can choose to help the government in a single case by not writing anything against it or by writing pro-government stories.

At the same time every democracy has undemocratic parts in it - which is already part of democracy itself. There are situations when a democratic government may find it essential to put pressure on the media to inform the population in a certain way; and also censorship is nothing that can only be connected to dictatorship; just think of the Falkland War, the Gulf-War or the Kosovo-War.

TEXTBLOCK 2/7 // URL: http://world-information.org/wio/infostructure/100437611661/100438658709
 
Linking and Framing: Cases

Mormon Church v. Sandra and Jerald Tanner

In a ruling of December 1999, a federal judge in Utah temporarily barred two critics of the Mormon Church from posting on their website the Internet addresses of other sites featuring pirated copies of a Mormon text. The Judge said that it was likely that Sandra and Jerald Tanner had engaged in contributory copyright infringement when they posted the addresses of three Web sites that they knew, or should have known, contained the copies.

Kaplan, Carl S.: Copyright Decision Threatens Freedom to Link. In: New York Times. December 10, 1999.

Universal Studios v. Movie-List

The website Movie-List, which features links to online, externally hosted movie trailers has been asked to completely refrain from linking to any of Universal Studio's servers containing the trailers as this would infringe copyright.

Cisneros, Oscar S.: Universal: Don't Link to Us. In: Wired. July 27, 1999.

More cases concerned with the issue of linking, framing and the infringement of intellectual property are published in:

Ross, Alexandra: Copyright Law and the Internet: Selected Statutes and Cases.

TEXTBLOCK 3/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659639
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 4/7 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Challenges for Copyright by ICT: Internet Service Providers

ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning caching, information residing on systems or networks of ISPs at the directions of users and transitory communication.

Caching

Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated.

Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts).

Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the DMCA or the proposed EU Directive on copyright and related rights in the information society (amended version) have provided exceptions for ISPs concerning particular acts of reproduction that are considered technical copies (caching). Nevertheless the exemption of liability for ISPs only applies if they meet a variety of specific conditions. In the course of the debate about caching also suggestions have been made to subject it to an implied license or fair use defense or make it (at least theoretically) actionable.

Information Residing on Systems or Networks at the Direction of Users

ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances.

Transitory Communication

In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions.

For more information on copyright (intellectual property) related problems of ISPs (BBSs (Bulletin Board Service Operators), systems operators and other service providers) see:

Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Intellectual Property and Technology Forum. June 4, 1999.

Teran, G.: Who is Vulnerable to Suit? ISP Liability for Copyright Infringement. November 2, 1999.

TEXTBLOCK 5/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659550
 
The Piracy "Industry"

Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of intellectual property by permitting still easier copying, electronic sales and transmissions of illegally reproduced copyrighted works on a grand scale.

This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent copy-protection security measures.

Lately the International Intellectual Property Alliance has published a new report on the estimated trade losses due to piracy. (The IIPA assumes that their report actually underestimates the loss of income due to the unlawful copying and distribution of copyrighted works. Yet it should be taken into consideration that the IIPA is the representative of the U.S. core copyright industries (business software, films, videos, music, sound recordings, books and journals, and interactive entertainment software).)

Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)





Motion Pictures

Records & Music

Business Applications

Entertainment Software

Books





1999

1998

1999

1998

1999

1998

1999

1998

1999

1998

Total Losses

1323

1421

1684

1613

3211

3437

3020

2952

673

619



Total Losses (core copyright industries)

1999

1998

9910.0

10041.5




TEXTBLOCK 6/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659531
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 7/7 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
Industrial design

Industrial design refers to the ornamental aspect of a useful article which may constitute of two or three-dimensional elements. To be qualified for intellectual property protection the design must be novel or original. Protection can be obtained through registration in a government office and usually is given for 10 to 15 years.

INDEXCARD, 1/10
 
Gateway

A gateway is a computer supplying point-to-multipoint connections between computer networks.

INDEXCARD, 2/10
 
Local Area Network (LAN)

A Local Area Network is an office network, a network restricted to a building area.

INDEXCARD, 3/10
 
Transmission Control Protocol/Internet Protocol (TCP/IP)

TCP and IP are the two most important protocols and communication standards. TCP provides reliable message-transmission service; IP is the key protocol for specifying how packets are routed around the Internet.

More detailed information can be found here

http://www.anu.edu/people/Roger.Clarke/II/Pri...
INDEXCARD, 4/10
 
Server

A server is program, not a computer, as it sometimes said, dedicated to store files, manage printers and network traffic, or process database queries.

Web sites, the nodes of the World Wide Web (WWW), e.g., are stored on servers.

INDEXCARD, 5/10
 
Economic rights

The economic rights (besides moral rights and in some cases also neighboring rights) granted to the owners of copyright usually include 1) copying or reproducing a work, 2) performing a work in public, 3) making a sound recording of a work, 4) making a motion picture of a work, 5) broadcasting a work, 6) translating a work and 7) adapting a work. Under certain national laws some of these rights are not exclusive rights of authorization but in specific cases, merely rights to remuneration.

INDEXCARD, 6/10
 
DMCA

The DMCA (Digital Millennium Copyright Act) was signed into law by U.S. President Clinton in 1998 and implements the two 1996 WIPO treaties (WIPO Performances and Phonograms Treaty and WIPO Copyright Treaty). Besides other issues the DMCA addresses the influence of new technologies on traditional copyright. Of special interest in the context of the digitalization of intellectual property are the titles no. 2, which refers to the limitation on the liability of online service providers for copyright infringement (when certain conditions are met), no. 3, that creates an exemption for making a copy of a computer program in case of maintenance and repair, and no. 4 which is concerned with the status of libraries and webcasting. The DCMA has been widely criticized for giving copyright-holders even more power and damage the rights and freedom of consumers, technological innovation, and the free market for information.

INDEXCARD, 7/10
 
The World Wide Web History Project

The ongoing World Wide Web History Project was established to record and publish the history of the World Wide Web and its roots in hypermedia and networking. As primary research methods are used archival research and the analysis of interviews and talks with pioneers of the World Wide Web. As result a vast of collection of historic video, audio, documents, and software is expected. The project's digital archive is currently under development.

http://www.webhistory.org/home.html

INDEXCARD, 8/10
 
Internet Society

Founded in 1992, the Internet Society is an umbrella organization of several mostly self-organized organizations dedicated to address the social, political, and technical issues, which arise as a result of the evolution and the growth of the Net. Its most important subsidiary organizations are the Internet Architecture Board, the Internet Engineering Steering Group, the Internet Engineering Task Force, the Internet Research Task Force, and the Internet Societal Task Force.

Its members comprise companies, government agencies, foundations, corporations and individuals. The Internet Society is governed by elected trustees.

http://www.isoc.org

http://www.isoc.org/
INDEXCARD, 9/10
 
Caching

Caching is a mechanism that attempts to decrease the time it takes to retrieve data by storing a copy at a closer location.

INDEXCARD, 10/10