Private data bunkers On the other hand are the data bunkers of the private sector, whose position is different. Although these are fast-growing engines of data collection with a much greater degree of dynamism, they may not have the same privileged position - although one has to differentiate among the general historical and social conditions into which a data bunker is embedded. For example, it can safely be assumed that the databases of a large credit card company or bank are more protected than the bureaucracies of small developing countries. Private data bunkers include
Credit bureaus Credit card companies Direct marketing companies Insurance companies Telecom service providers Mail order stores Online stores | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
The Piracy "Industry" Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent Lately the Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Identificaiton in history In biometric technology, the subject is reduced to its physical and therefore inseparable properties. The subject is a subject in so far as it is objectified; that is, in so far as is identified with its own res extensa, Descartes' "extended thing". The subject exists in so far as it can be objectified, if it resists the objectification that comes with measurement, it is rejected or punished. Biometrics therefore provides the ultimate tool for control; in it, the dream of hermetic identity control seems to become a reality, a modern technological reconstruction of traditional identification techniques such as the handshake or the look into somebody's eyes. The use of identification by states and other institutions of authority is evidently not simply a modern phenomenon. The ancient Babylonians and Chinese already made use of finger printing on clay to identify authors of documents, while the Romans already systematically compared handwritings. Body measurement has long been used by the military. One of the first measures after entering the military is the identification and appropriation of the body measurements of a soldier. These measurements are filed and combined with other data and make up what today we would call the soldier's data body. With his data body being in possession of the authority, a soldier is no longer able freely socialise and is instead dependent on the disciplinary structure of the military institution. The soldier's social being in the world is defined by the military institution. However, the military and civilian spheres of modern societies are no longer distinct entities. The very ambivalence of advanced technology (dual use technologies) has meant that "good" and "bad" uses of technology can no longer be clearly distinguished. The measurement of physical properties and the creation of data bodies in therefore no longer a military prerogative, it has become diffused into all areas of modern societies. If the emancipatory potential of weak identities is to be of use, it is therefore necessary to know how biometric technologies work and what uses they are put to. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Intellectual Property: A Definition Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) Industrial Property a) b) c) d) Unfair competition (trade secrets) e) Geographical indications (indications of source and appellations of origin) 2) Copyright The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Positions Towards the Future of Copyright in the "Digital Age" With the development of new transmission, distribution and publishing technologies and the increasing digitalization of information copyright has become the subject of vigorous debate. Among the variety of attitudes towards the future of traditional copyright protection two main tendencies can be identified: Eliminate Copyright Anti-copyrightists believe that any Enlarge Copyright Realizing the growing economic importance of intellectual property, especially the holders of copyright (in particular the big publishing, distribution and other | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
The Copyright Industry Copyright is not only about protecting the rights of creators, but has also become a major branch of industry with significant contributions to the global economy. According to the In an age where knowledge and information become more and more important and with the advancement of new technologies, transmission systems and distribution channels a further increase in the production of | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Virtual body and data body The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world. But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
In Search of Reliable Internet Measurement Data Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible. Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Size and Growth In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known So his statement is a slap in the face of all market researchers stating otherwise. In a certain sense this is ridiculous, because since the inception of the So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the "There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Hosts The Despite the small sample, this method has at least one flaw: Internet Weather Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet Hits, Page Views, Visits, and Users Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed. For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate. In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle. But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and For If you like to play around with Internet statistics instead, you can use Robert Orenstein's Measuring the Density of Measuring the Density of Dodge and Shiode used data on the ownership of IP addresses from | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Individualized Audience Targeting New opportunities for online advertisers arise with the possibility of one-to-one Web applications. Software agents for example promise to "register, recognize and manage end-user profiles; create personalized communities on-line; deliver personalized content to end-users and serve highly targeted advertisements". The probably ultimate tool for advertisers. Although not yet widely used, companies like | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Procter and Gamble Major American manufacturer with headquarters in Cincinnati, Ohio. The modern Procter & Gamble markets products in several major areas: Laundry and cleaning products; personal-care products; food products; and such miscellaneous products as cellulose pulp, chemicals, and animal feed ingredients. The company has long been one of the leading American national advertisers. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Royal Dutch/Shell Group One of the world's largest corporate entities in sales, consisting of companies in more than 100 countries, whose shares are owned by NV Koninklijke Nederlandsche Petroleum Maatschappij (Royal Dutch Petroleum Company Ltd.) of The Hague and by the "Shell" Transport and Trading Company, PLC, of London. Below these two parent companies are two holding companies, Shell Petroleum NV and the Shell Petroleum Company Limited, whose shares are owned 60 percent by Royal Dutch and 40 percent by "Shell" Transport and Trading. The holding companies, in turn, hold shares in and administer the subsidiary service companies and operating companies around the world, which engage in oil, petrochemical, and associated industries, from research and exploration to production and marketing. Several companies also deal in metals, nuclear energy, solar energy, coal, and consumer products. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Exxon Formerly (until 1972) Standard Oil Company, Exxon is one of the world's largest corporations in terms of sales, with investments and operations in petroleum and natural gas, coal, nuclear fuels, chemicals, and such ores as copper, lead, and zinc. It also operates pipelines and one of the world's largest fleets of tankers and other ships. Exxon engages in every phase of the petroleum industry from oil fields to service stations. It is headquartered in Irving, Texas, a suburb of Dallas. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Philip Morris American holding company founded in 1985, the owner of several major American companies, notably Philip Morris Inc., the General Foods Corporation, and Kraft, Inc., with diversified interests in tobacco and food products. In 1988 Philip Morris acquired Kraft, Inc., a large maker of cheeses and grocery products. Philip Morris thus became one of the world's largest corporate producers of consumer goods. Its headquarters are in New York City. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Pfizer Pfizer Inc is a research-based, global pharmaceutical company. The company has three business segments: health care, animal health and consumer health care. Its products are available in more than 150 countries. Headquarters are in New York. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Bristol-Myers Squibb Company American company resulting from a merger in 1989 and dating to companies founded in 1858 and 1887. It produces toiletries, cosmetics, household cleaning products, pharmaceuticals, health foods and supplements, and health equipment and prostheses. Headquarters are in New York City. In 1989 the merger of Bristol-Myers Company and Squibb Corporation (descendant of a company founded in 1858) created one of the world's largest pharmaceutical companies. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
American Petroleum Institute Major national trade association representing petroleum industry efforts in exploration and production, transportation, refining, and marketing. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
CIGNA CIGNA was formed in 1982 through the combination of INA Corporation and Connecticut General Corporation. CIGNA's formation in 1982 combined a leading property-casualty insurer with a leading supplier of life insurance and employee benefits. CIGNA has tightened its focus on employee benefits, divesting its individual life insurance business in 1998, and its domestic and international property and casualty operations in 1999. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Salomon Smith Barney Investment banking firm and securities dealer. Founded in the 19th century in Philadelphia, in 1993 Smith Barney became a wholly owned subsidiary of Travelers Group Inc. The 1998 merger of Citicorp and Travelers Group brought together Citibank, Travelers, Salomon Smith Barney, Commercial Credit and Primerica under Citigroup's trademark red umbrella. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Chemical Banking Corporation In 1996 the firm, which was by then the second-largest bank in the United States, merged with another New York-based bank, The Chase Manhattan Corporation, to form the largest bank in the nation. Though the Chemical Banking Corporation had been the larger partner in the merger, the resulting firm was called The Chase Manhattan Corporation. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Casey, William J. b. March 13, 1913, Elmhurst, Queens, N.Y., U.S. d. May 6, 1987, Glen Cove, N.Y. Powerful and controversial director of the U.S. Central Intelligence Agency (CIA) from 1981 to 1987 during the Ronald Reagan administration. While affiliated with the law firm Rogers & Wells (1976-81), Casey became Reagan's presidential campaign manager and was subsequently awarded the directorship of the CIA in 1981. Under his leadership, covert action increased in such places as Afghanistan, Central America, and Angola, and the agency stepped up its support for various anticommunist insurgent organizations. He was viewed as a pivotal figure in the CIA's secret involvement in the Iran-Contra Affair, in which U.S. weapons were sold to Iran and in which money from the sale was funneled to Nicaraguan rebels, in possible violation of U.S. law. Just before he was to testify in Congress on the matter in December 1986, he suffered seizures and then underwent brain surgery; he died from nervous-system lymphoma without ever testifying. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||