Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
German Bundeswehr

The German contribution to the Western defence system, apart from playing host and contributing to the continued presence of allied troops on its soil, takes the form of its combined arm of defence known as the Federal Armed Forces (Bundeswehr). Constituting the largest contingent of NATO troops in Europe, the armed forces are divided into an army, navy, and air force. From its inception it was envisioned as a "citizens' " defence force, decisively under civilian control through the Bundestag, and its officers and soldiers trained to be mindful of the role of the military in a democracy. Conscription for males is universal, the military liability beginning at 18 and ending at 45 years of age.

INDEXCARD, 1/2
 
Enigma Machine

The Enigma Encryption Machine was famous for its insecurities as for the security that it gave to German ciphers. It was broken, first by the Poles in the 1930s, then by the British in World War II.

INDEXCARD, 2/2