Abstract

What we seem to fear most is to get into a status of insecurity - given that the definitions of the word security vary extremely. Thus methods of securing ideas, people, things or data increase their popularity and necessity tremendously. One of them is cryptography - as well as the prohibition/restriction of cryptography.
Questions whether cryptography is absolutely inevitable or on the contrary supports certain criminals more than the ordinary internet-user, are arising. And as the last developments in international and national law showed, Northern governments are changing opinion about that, due to economic tasks.
Business needs cryptography.
Still, the use of cryptography is no recent invention. Already the first steps in writing or even in human communication itself meant developing codes for keeping secrets at the same time as providing information.

This site gives a timeline for the history of cryptography, provides an introduction into the most important terms of tools and devices connected to that topic, and finally tries to interpret necessities for and ideas against cryptography or in other words leads through the current discussions concerning democracy and governmental fears and doubts regarding the security of data-transmission.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438658887
 
What is the Internet?

Each definition of the Internet is a simplified statement and runs the risk of being outdated within a short time. What is usually referred to as the Internet is a network of thousands of computer networks (so called autonomous systems) run by governmental authorities, companies, and universities, etc. Generally speaking, every time a user connects to a computer networks, a new Internet is created. Technically speaking, the Internet is a wide area network (WAN) that may be connected to local area networks (LANs).

What constitutes the Internet is constantly changing. Certainly the state of the future Net will be different to the present one. Some years ago the Internet could still be described as a network of computer networks using a common communication protocol, the so-called IP protocol. Today, however, networks using other communication protocols are also connected to other networks via gateways.

Also, the Internet is not solely constituted by computers connected to other computers, because there are also point-of-sale terminals, cameras, robots, telescopes, cellular phones, TV sets and and an assortment of other hardware components that are connected to the Internet.

At the core of the Internet are so-called Internet exchanges, national backbone networks, regional networks, and local networks.

Since these networks are often privately owned, any description of the Internet as a public network is not an accurate. It is easier to say what the Internet is not than to say what it is. On 24 October, 1995 the U.S. Federal Networking Council made the following resolution concerning the definition of the term "Internet": "Internet" refers to the global information system that (i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons; (ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and (iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein." (http://www.fnc.gov/Internet_res.html)

What is generally and in a simplyfiying manner called the Internet, may be better referred to as the Matrix, a term introduced by science fiction writer William Gibson, as John S. Quarterman and Smoot Carl-Mitchell have proposed. The Matrix consists of all computer systems worldwide capable of exchanging E-Mail: of the USENET, corporate networks and proprietary networks owned by telecommunication and cable TV companies.

Strictly speaking, the Matrix is not a medium; it is a platform for resources: for media and services. The Matrix is mainly a very powerful means for making information easily accessible worldwide, for sending and receiving messages, videos, texts and audio files, for transferring funds and trading securities, for sharing resources, for collecting weather condition data, for trailing the movements of elephants, for playing games online, for video conferencing, for distance learning, for virtual exhibitions, for jamming with other musicians, for long distance ordering, for auctions, for tracking packaged goods, for doing business, for chatting, and for remote access of computers and devices as telescopes and robots remotely, e. g. The Internet is a wonderful tool for exchanging, retrieving, and storing data and sharing equipment over long distances and eventually real-time, if telecommunication infrastructure is reliable and of high quality.

For a comprehensive view of uses of the Matrix, especially the World Wide Web, see ""24 Hours in Cyberspace"

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611791/100438659889
 
Operating the net: overview

The Net consists of thousands of thousands of governmental and private networks linked together. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way of ever gaining ultimate control of the Internet. Although each of these networks is operated and controlled by an organization, no single organization operates and controls the Net. Instead of a central authority governing the Net, several bodies assure the operability of the Net by developing and setting technical specifications for the Net and by the control of the technical key functions of the Net as the coordination of the domain name system and the allocation of IP numbers.

Originally, the Net was a research project funded and maintained by the US Government and developed in collaboration by scientists and engineers. As the standards developed for ensuring operability ensued from technical functionality, technical coordination gradually grew out of necessity and was restricted to a minimum and performed by volunteers.

Later, in the 1980s, those occupied with the development of technical specifications organized themselves under the umbrella of the Internet Society in virtual organizations as the Internet Engineering Task Force, which were neither officially established nor being based on other structures than mailing lists and commitment, but nonetheless still serve as task forces for the development of standards ensuring the interoperability on the Net.

Since the late 80s and the early 90s, with the enormous growth of the Net - which was promoted by the invention of Local Area Networks, the creation of the World Wide Web, the increased use of personal computers and the connecting of corporations to the Net, just to name a few - coordination of some technical key functions as the domain name system was handed over to corporations as Network Solutions Inc.

Since the year 2000, a new model for technical coordination has been emerging: Formerly performed by several bodies, technical coordination is transferred to a single non-governmental organization: the Internet Coordination of Assigned Numbers and Names.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611791/100438659824
 
Internet Research Task Force

Being itself under the umbrella of the Internet Society, the Internet Research Task Force is an umbrella organization of small research groups working on topics related to Internet protocols, applications, architecture and technology. It is governed by the Internet Research Steering Group.

http://www.irtf.org

http://www.irtf.org/
INDEXCARD, 1/4
 
Gottfried Wilhelm von Leibniz

b. July 1, 1646, Leipzig
d. November 14, 1716, Hannover, Hanover

German philosopher, mathematician, and political adviser, important both as a metaphysician and as a logician and distinguished also for his independent invention of the differential and integral calculus. 1661, he entered the University of Leipzig as a law student; there he came into contact with the thought of men who had revolutionized science and philosophy--men such as Galileo, Francis Bacon, Thomas Hobbes, and René Descartes. In 1666 he wrote De Arte Combinatoria ("On the Art of Combination"), in which he formulated a model that is the theoretical ancestor of some modern computers.

INDEXCARD, 2/4
 
Blaise Pascal

b. June 19, 1623, Clermont-Ferrand, France
d. August 19, 1662, Paris, France

French mathematician, physicist, religious philosopher, and master of prose. He laid the foundation for the modern theory of probabilities, formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience of God through the heart rather than through reason. The establishment of his principle of intuitionism had an impact on such later philosophers as Jean-Jacques Rousseau and Henri Bergson and also on the Existentialists.

INDEXCARD, 3/4
 
Vacuum tube

The first half of the 20th century was the era of the vacuum tube in electronics. This variety of electron tube permitted the development of radio broadcasting, long-distance telephony, television, and the first electronic digital computers. These early electronic computers were, in fact, the largest vacuum-tube systems ever built. Perhaps the best-known representative is the ENIAC (Electronic Numerical Integrator and Computer, completed in 1946).

INDEXCARD, 4/4