Databody convergence In the phrase "the rise of the citizen as a consumer", to be found on the When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors. There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions. Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control. The world's largest data corporation, Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means. However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone. |
|
body and mind as defects In an increasingly technisised world where technology has also become a determinant of value-free values, mind and body are increasingly considered as "imperfect" compared to the brilliant designs of technology. While for centuries the "weakness" of the human flesh has been the object of lamentations, the 21st century seems set to transform the genre of tragedy into a sober technological project of improvement. Within this project, men and women receive the status of "risk factor" which potentially destabilises technological systems, a circumstance which calls for correction and control measures. Two main ways of checking the risk of "human error", as well as inefficiency, irrationality, selfishness, emotional turbulence, and other weaknesses of human beings: by minimizing human participation in technological processes, and, to an increasing extent, by technically eliminating such risk factors in human beings themselves. Human beings, once considering themselves as the "crown of creation" or the "masters of the world" are reducing themselves to the "human factor" in globally networked technical systems, that factor which still escapes reliable calculation and which, when interacting with fast and potent technical environments, is a source of imperfection. For the human mind and body to perfect itself - to adapt itself to the horizon of perfection of science and technology - takes long time periods of discipline, learning, even biological evolution. In the calculating thinking required in highly technisised context, mind and body inevitably appear as deficient compared to a technology which, unlike the human organism, has the potential of fast and controlled "improvement". Surely, the human organism has always been prey to defects, to "illnesses" and "disablement". Disease has therefore been one of the main motivations behind the development of Bio-ITs: Bio-ITs are being developed to help the blind get their eyesight back, the deaf to hear, the lame to walk, the depressed to be happy. Such medical applications of Bio-ITs are nothing essentially new: Captain Silver's crunch, the wheelchair, a tooth filling save the same basic purpose of correcting a physical deficiency. But there is a much wider scope to this new development, in which the "normal" biological condition of a human being, such as proneness to death, forgetfulness, aging, inefficiency, solitude, or boredom are understood as defects which can and should be corrected. The use of ITs to overcome such "biological" constraints is often seen as the "ultimate" technological advance, even if the history of utopian visions connected to technological innovation is as old as it is rife with surprise, disappointment, and disaster. |
|
Enforcement: Copyright Management and Control Technologies With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of |
|
Global Data Flows In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy. Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries. This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires. |
|
Fair use Certain |
|
Caching Caching generally refers to the process of making an extra copy of a file or a set of files for more convenient retrieval. On the Internet caching of third party files can occur either locally on the user's client computer (in the RAM or on the hard drive) or at the server level ("proxy caching"). A requested file that has been cached will then be delivered from the cache rather than a fresh copy being retrieved over the Internet. |
|
Royalties Royalties refer to the payment made to the owners of certain types of rights by those who are permitted by the owners to exercise the rights. The |
|
Internet Exchanges Internet exchanges are intersecting points between major networks. List of the World's Public Internet exchanges ( |
|