Key-Systems

As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce.
Key cryptosystems try to provide more privacy.

symmetric-key cryptosystems:
The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it?
In former times messengers or pigeons were doing the exchange of those keys.

Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated.
Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms.
some symmetric-key systems are:

- DES (Data Encryption Standard), the standard for credit cards
- Triple-DES, which is a variation of DES, encrypting the plaintext three times.
- IDEA (International Data Encryption Standard)
- blowfish encryption algorithm, which is said to be faster than DES and IDEA

Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not.

For further information see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/symmetr/content.htm

TEXTBLOCK 1/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438659090
 
History: Communist Tradition

Following the communist revolutions of the 20th century all "means of production" became the property of the state as representative of "the masses". Private property ceased to exist. While moral rights of the creator were recognized and economic rights acknowledged with a one-time cash award, all subsequent rights reverted to the state.

With the transformation of many communist countries to a market system most of them have now introduced laws establishing markets in intellectual property rights. Still the high rate of piracy reflects a certain lack of legal tradition.

TEXTBLOCK 2/8 // URL: http://world-information.org/wio/infostructure/100437611725/100438659483
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 3/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Extract of Disney’s Content Production and Distribution Holdings

Although the traditional media companies first steps into the digital sphere were fairly clumsy, they have quickly learned from their mistakes and continued to enlarge their Internet presence. Time Warner now for instance operates about 130 Web-Sites (http://www.timewarner.com/corp/about/pubarchive/websites.html). Anyhow the stronger online-engagement of the big media conglomerates by 1998 has led to the establishment of a new pattern: "More than three-quarters of the 31 most visited news and entertainment websites were affiliated with large media firms, and most of the rest were connected to outfits like AOL and Microsoft." (Broadcasting and Cable, 6/22/98).

During the last years many of the smaller players in the field of digital media have been driven out of competition by the huge media conglomerates. This mainly is a result of the advantages that the commercial media giants have over their less powerful counterparts:

    As engagement in online activities mostly does not lead to quick profits, investors must be able to take losses, which only powerful companies are able to.



    Traditional media outlets usually have huge stocks of digital programming, which they can easily plug into the Internet at little extra cost.



    To generate audience, the big media conglomerates constantly promote their Websites and other digital media products on their traditional media holdings.



    As possessors of the hottest "brands" commercial media companies often get premier locations from browser software makers, Internet service providers, search engines and portals.



    Having the financial resources at their disposition the big media firms are aggressive investors in start-up Internet media companies.



Commercial media companies have close and long ties to advertisers, which enables them to seize most of these revenues.

TEXTBLOCK 4/8 // URL: http://world-information.org/wio/infostructure/100437611795/100438659167
 
RTMark and Adbusters at the WTO Conference in Seattle

The 1999 WTO (World Trade Organization) Conference in Seattle not only attracted a multitude of demonstrators, but also artistic and cultural activists like RTMark and Adbusters.

Adbusters, well known as fighters against corporate disinformation, injustices in the global economy and "physical and mental pollution", timely for the WTO Conference purchased three billboards in downtown Seattle. Featuring an image with the text "System Error - Type 2000 (progress)", the billboards were meant to challenge "... the WTO's agenda of global corporate growth and expose what isn't reflected in the United State's GNP - human and environmental capital."

At the same time RTMark went on-line with its spoof WTO website http://gatt.org. Shortly after its release WTO Director-General Mike Moore accused RTMark of attempting to "undermine WTO transparency" by copying the WTO website's design and using "domain names such as `www.gatt.org` and page titles such as 'World Trade Organization / GATT Home Page' which make it difficult for visitors to realize that these are fake pages." http://gatt.org is not the first time that RTMark has used website imitation aiming at rendering an entity more transparent. RTMark has performed the same "service" for George W. Bush, Rudy Giuliani, Shell Oil, and others with the principal purpose of publicizing corporate abuses of democratic processes.

TEXTBLOCK 5/8 // URL: http://world-information.org/wio/infostructure/100437611652/100438658922
 
More and more, faster and faster, but...

Since the invention of appropriate means and technologies, communication no longer requires face-to-face meetings.

From writing and reading to using computers, expanding and exhausting one's possibilities to communicate relies more and more on the application of skills we have to learn. With the increasing importance of communication technologies, learning to apply them properly becomes a kind of rite of passage.

A Small World

From the very beginning - the first Sumerian pictographs on clay tablets - to today's state of the art technologies - broadband communication via fiber-optic cables and satellites - the amount of information collected, processed and stored, the capabilities to do so, as well as the possible speed of information transmission exponentially accelerate.

Since the invention of the electrical telegraph, but especially with today's growing digital communication networks, every location on earth seems to be close, however distant it may be, and also time no longer remains a significant dimension.

Threatened Cultural Memory

More and more information is transmitted and produced faster and faster, but the shelf life of information becomes more and more fragile. For more than 4500 years Sumerian pictographs written on clay tablets remained intact, but newspapers and books, printed some decades ago, crumble into pieces; film reels, video tapes and cassettes corrode. Digitalization of information is not a cure; on the contrary it even intensifies the danger of destroying cultural heritage. Data increasingly requires specific software and hardware, but to regularly convert all available digitized information is an unexecutable task.

Compared to the longevity of pictographs on clay tablets, digitized information is produced for instant one-time use. The increasing production and processing of information causes a problem hitherto unknown: the loss of our cultural memory.

For further information see T. Matthew Ciolek, Global Networking Timeline.

For another history of communication systems see Friedrich Kittler, The History of Communication Media.

TEXTBLOCK 6/8 // URL: http://world-information.org/wio/infostructure/100437611796/100438659807
 
Digital Signatures, Timestamps etc

Most computer systems are far from being secure.
A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data.
It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector.

Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions.

If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool.

In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too.

A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged.

For more terms of cryptography and more information see:
http://poseidon.csd.auth.gr/signatures
http://www.dlib.org/dlib/december97/ibm/12lotspiech.html
http://www.cryptography.com/technology/technology.html
http://www.cdt.org/crypto/glossary.shtml
http://www.oecd.org//dsti/sti/it/secur/prod/GD97-204.htm

TEXTBLOCK 7/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438659015
 
Governmental Influence

Agencies like the NSA are currently able to eavesdrop on anyone with few restrictions only - though other messages are spread by the NSA.
Theoretically cryptography can make that difficult. Hence those agencies speak up for actions like introducing trapdoors to make it possible to get access to everybody's data.

See the U.S. discussion about the Clipper Chip some years ago:
http://www.epic.org/crypto/clipper/
http://www.cdt.org/crypto/admin/041693whpress.txt

While encryption offers us privacy for the transmission of data, we do not only wish to have it but also need it if we want to transport data which shall not be seen by anyone else but the recipient of our message. Given this, the governments and governmental institutions/organizations fear to lose control. Strict laws are the consequence. The often repeated rumor that the Internet was a sphere of illegality has been proven wrong. Some parts are controlled by law very clearly. One of them is cryptography. Prohibition of cryptography or at least its restriction are considered an appropriate tool against criminality. Or one should say: had been considered that. In the meantime also governmental institutions have to admit that those restrictions most of all work against the population instead against illegal actors. Therefore laws have been changed in many states during the last five years. Even the USA, the Master of cryptography-restriction, liberated its laws in December 1999 to be more open-minded now.

for an insight into the discussion having gone on for years see:
http://www.cdt.org/crypto/new2crypto/3.shtml

the final text of the new U.S. Encryption Regulations you will find under:
http://www.cdt.org/crypto/admin/000110cryptoregs.shtml
http://www.cdt.org/crypto/admin/000114cryptoregs.txt

an explanation of the regulations can be found under:
http://www.cdt.org/crypto/admin/000112commercefactsheet.shtml

TEXTBLOCK 8/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438659102
 
Transistor

A transistor is a solid-state device for amplifying, controlling, and generating electrical signals. Transistors are used in a wide array of electronic equipment, ranging from pocket calculators and radios to industrial robots and communications satellites.

INDEXCARD, 1/10
 
International Cable Protection Committee (ICPC)

The ICPC aims at reducing the number of incidents of damages to submarine telecommunications cables by hazards.

The Committee also serves as a forum for the exchange of technical and legal information pertaining to submarine cable protection methods and programs and funds projects and programs, which are beneficial for the protection of submarine cables.

Membership is restricted to authorities (governmental administrations or commercial companies) owning or operating submarine telecommunications cables. As of May 1999, 67 members representing 38 nations were members.

http://www.iscpc.org

INDEXCARD, 2/10
 
WTO

An international organization designed to supervise and liberalize world trade. The WTO (World Trade Organization) is the successor to the General Agreement on Tariffs and Trade (GATT), which was created in 1947 and liberalized the world's trade over the next five decades. The WTO came into being on Jan. 1, 1995, with 104 countries as its founding members. The WTO is charged with policing member countries' adherence to all prior GATT agreements, including those of the last major GATT trade conference, the Uruguay Round (1986-94), at whose conclusion GATT had formally gone out of existence. The WTO is also responsible for negotiating and implementing new trade agreements. The WTO is governed by a Ministerial Conference, which meets every two years; a General Council, which implements the conference's policy decisions and is responsible for day-to-day administration; and a director-general, who is appointed by the Ministerial Conference. The WTO's headquarters are in Geneva, Switzerland.



INDEXCARD, 3/10
 
DES

The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys.

for more information see:
http://www.britannica.com/bcom/eb/article/3/0,5716,117763+5,00.html
http://www.cryptography.com/des/

http://www.britannica.com/bcom/eb/article/3/0...
http://www.cryptography.com/des/
INDEXCARD, 4/10
 
Invention of photo copies, 1727

Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but does not put them into practical use.

Not before 1843 the first optical photocopier was patented, when William Henry Fox Talbot got granted a patent for his magnifying apparatus.

In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. But not before 1902 images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as telecommunication service in Germany in 1922.

Source: Klaus Urbons, Copy Art. Kunst und Design mit dem Fotokopierer, Köln: Dumont, 1993 (2nd edition)

INDEXCARD, 5/10
 
Friedrich Kittler, The History of Communication Media

In this essay, Friedrich Kittler, one of the world's leading media theorists and media historicist, offers a concise and fascinating history of communication technologies in general terms from its beginnings up to now, provoking new insights by showing interesting interdependencies.

http://www.ctheory.com/ga1.14.html

INDEXCARD, 6/10
 
Time Warner

The largest media and entertainment conglomerate in the world. The corporation resulted from the merger of the publisher Time Inc. and the media conglomerate Warner Communications Inc. in 1989. It acquired the Turner Broadcasting System, Inc. (TBS) in 1996. Time Warner Inc.'s products encompass magazines, hardcover books, comic books, recorded music, motion pictures, and broadcast and cable television programming and distribution. The company's headquarters are in New York City. In January 2000 Time Warner merged with AOL (America Online), which owns several online-services like Compuserve, Netscape and Netcenter in a US$ 243,3 billion deal.

INDEXCARD, 7/10
 
News Corporation

The News Corporation Ltd., a global media holding company, which governed News Limited (Australia), News International (U.K.), and News America Holdings Inc. (U.S.) was founded by the Australian-born newspaper publisher and media entrepreneur, Rupert Murdoch. Murdoch's corporate interests center on newspaper, magazine, book, and electronic publishing; television broadcasting; and film and video production, principally in the United States, the United Kingdom, and Australia.

INDEXCARD, 8/10
 
Memex Animation by Ian Adelman and Paul Kahn


INDEXCARD, 9/10
 
Mass production

The term mass production refers to the application of the principles of specialization, division of labor, and standardization of parts to the manufacture of goods. The use of modern methods of mass production has brought such improvements in the cost, quality, quantity, and variety of goods available that the largest global population in history is now sustained at the highest general standard of living. A moving conveyor belt installed in a Dearborn, Michigan, automobile plant in 1913 cut the time required to produce flywheel magnetos from 18 minutes to 5 and was the first instance of the use of modern integrated mass production techniques.

INDEXCARD, 10/10