|
Governmental Influence |


 |
Agencies like the NSA are currently able to eavesdrop on anyone with few restrictions only - though other messages are spread by the NSA. Theoretically cryptography can make that difficult. Hence those agencies speak up for actions like introducing trapdoors to make it possible to get access to everybody's data.
See the U.S. discussion about the Clipper Chip some years ago:
http://www.epic.org/crypto/clipper/
http://www.cdt.org/crypto/admin/041693whpress.txt
While encryption offers us privacy for the transmission of data, we do not only wish to have it but also need it if we want to transport data which shall not be seen by anyone else but the recipient of our message. Given this, the governments and governmental institutions/organizations fear to lose control. Strict laws are the consequence. The often repeated rumor that the Internet was a sphere of illegality has been proven wrong. Some parts are controlled by law very clearly. One of them is cryptography. Prohibition of cryptography or at least its restriction are considered an appropriate tool against criminality. Or one should say: had been considered that. In the meantime also governmental institutions have to admit that those restrictions most of all work against the population instead against illegal actors. Therefore laws have been changed in many states during the last five years. Even the USA, the Master of cryptography-restriction, liberated its laws in December 1999 to be more open-minded now.
for an insight into the discussion having gone on for years see:
http://www.cdt.org/crypto/new2crypto/3.shtml
the final text of the new U.S. Encryption Regulations you will find under:
http://www.cdt.org/crypto/admin/000110cryptoregs.shtml
http://www.cdt.org/crypto/admin/000114cryptoregs.txt
an explanation of the regulations can be found under:
http://www.cdt.org/crypto/admin/000112commercefactsheet.shtml

|
|
 |
|
Expert system
Expert systems are advanced computer programs that mimic the knowledge and reasoning capabilities of an expert in a particular discipline. Their creators strive to clone the expertise of one or several human specialists to develop a tool that can be used by the layman to solve difficult or ambiguous problems. Expert systems differ from conventional computer programs as they combine facts with rules that state relations between the facts to achieve a crude form of reasoning analogous to artificial intelligence. The three main elements of expert systems are: (1) an interface which allows interaction between the system and the user, (2) a database (also called the knowledge base) which consists of axioms and rules, and (3) the inference engine, a computer program that executes the inference-making process. The disadvantage of rule-based expert systems is that they cannot handle unanticipated events, as every condition that may be encountered must be described by a rule. They also remain limited to narrow problem domains such as troubleshooting malfunctioning equipment or medical image interpretation, but still have the advantage of being much lower in costs compared with paying an expert or a team of specialists.
|
|
|