Asymmetric or Public-Key-Cryptosystems

Here the keys for encryption and decryption differ. There needs to exist a private key, which is only known to the individual, and a public key, which is published. Every person has her or his own private key that is never published. It is used for decrypting only. Mathematically the different keys are linked to each other, still it is nearly impossible to derive the private key from the public one.
For sending a message to someone, one has to look up the other's public key and encrypt the message with it. The keyholder will use his/her private key to decrypt it. While everybody can send a message with the public key, the private key absolutely has to stay secret - and probably will.

"The best system is to use a simple, well understood algorithm which relies on the security of a key rather than the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all over." (Andrew Carol)

very famous examples for public-key systems are:

· RSA:
The RSA is probably one of the most popular public-key cryptosystems. With the help of RSA, messages can be encrypted, but also digital signatures are provided.
The mathematics behind are supposedly quite easy to understand (see: http://world.std.com/~franl/crypto/rsa-guts.html.

· PGP:
PGP is a public key encryption program. Most of all it is used for e-mail encryption.
It is supposed to be quite safe - until now.

· PGPi is simply the international variation of PGP.

for further information about the RSA and other key-systems visit the RSA homepage:
http://www.rsa.com/rsalabs/faq/
http://www.rsa.com/rsalabs/faq/questions.html
or:
http://www.pgpi.org

All of those tools, like hash functions, too, can help to enhance security and prevent crime.
They can theoretically, but sometimes they do not, as the example of the published credit card key of France in March 2000 showed.
For more information see:
http://news.voila.fr/news/fr.misc.cryptologie

Still, cryptography can help privacy.
On the other hand cryptography is only one element to assure safe transport of data. It is especially the persons using it who have to pay attention. A key that is told to others or a lost cryptographic key are the end of secrecy.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659074
 
Key-Systems

As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce.
Key cryptosystems try to provide more privacy.

symmetric-key cryptosystems:
The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it?
In former times messengers or pigeons were doing the exchange of those keys.

Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated.
Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms.
some symmetric-key systems are:

- DES (Data Encryption Standard), the standard for credit cards
- Triple-DES, which is a variation of DES, encrypting the plaintext three times.
- IDEA (International Data Encryption Standard)
- blowfish encryption algorithm, which is said to be faster than DES and IDEA

Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not.

For further information see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/symmetr/content.htm

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659090
 
MIT

The MIT (Massachusetts Institute of Technology) is a privately controlled coeducational institution of higher learning famous for its scientific and technological training and research. It was chartered by the state of Massachusetts in 1861 and became a land-grant college in 1863. During the 1930s and 1940s the institute evolved from a well-regarded technical school into an internationally known center for scientific and technical research. In the days of the Great Depression, its faculty established prominent research centers in a number of fields, most notably analog computing (led by Vannevar Bush) and aeronautics (led by Charles Stark Draper). During World War II, MIT administered the Radiation Laboratory, which became the nation's leading center for radar research and development, as well as other military laboratories. After the war, MIT continued to maintain strong ties with military and corporate patrons, who supported basic and applied research in the physical sciences, computing, aerospace, and engineering. MIT has numerous research centers and laboratories. Among its facilities are a nuclear reactor, a computation center, geophysical and astrophysical observatories, a linear accelerator, a space research center, supersonic wind tunnels, an artificial intelligence laboratory, a center for cognitive science, and an international studies center. MIT's library system is extensive and includes a number of specialized libraries; there are also several museums.

INDEXCARD, 1/1