Key-Systems

As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce.
Key cryptosystems try to provide more privacy.

symmetric-key cryptosystems:
The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it?
In former times messengers or pigeons were doing the exchange of those keys.

Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated.
Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms.
some symmetric-key systems are:

- DES (Data Encryption Standard), the standard for credit cards
- Triple-DES, which is a variation of DES, encrypting the plaintext three times.
- IDEA (International Data Encryption Standard)
- blowfish encryption algorithm, which is said to be faster than DES and IDEA

Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not.

For further information see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/symmetr/content.htm

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438659090
 
Asymmetric or Public-Key-Cryptosystems

Here the keys for encryption and decryption differ. There needs to exist a private key, which is only known to the individual, and a public key, which is published. Every person has her or his own private key that is never published. It is used for decrypting only. Mathematically the different keys are linked to each other, still it is nearly impossible to derive the private key from the public one.
For sending a message to someone, one has to look up the other's public key and encrypt the message with it. The keyholder will use his/her private key to decrypt it. While everybody can send a message with the public key, the private key absolutely has to stay secret - and probably will.

"The best system is to use a simple, well understood algorithm which relies on the security of a key rather than the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all over." (Andrew Carol)

very famous examples for public-key systems are:

· RSA:
The RSA is probably one of the most popular public-key cryptosystems. With the help of RSA, messages can be encrypted, but also digital signatures are provided.
The mathematics behind are supposedly quite easy to understand (see: http://world.std.com/~franl/crypto/rsa-guts.html.

· PGP:
PGP is a public key encryption program. Most of all it is used for e-mail encryption.
It is supposed to be quite safe - until now.

· PGPi is simply the international variation of PGP.

for further information about the RSA and other key-systems visit the RSA homepage:
http://www.rsa.com/rsalabs/faq/
http://www.rsa.com/rsalabs/faq/questions.html
or:
http://www.pgpi.org

All of those tools, like hash functions, too, can help to enhance security and prevent crime.
They can theoretically, but sometimes they do not, as the example of the published credit card key of France in March 2000 showed.
For more information see:
http://news.voila.fr/news/fr.misc.cryptologie

Still, cryptography can help privacy.
On the other hand cryptography is only one element to assure safe transport of data. It is especially the persons using it who have to pay attention. A key that is told to others or a lost cryptographic key are the end of secrecy.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438659074
 
0 - 1400 A.D.

150
A smoke signals network covers the Roman Empire

The Roman smoke signals network consisted of towers within a visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling.
For a similar telegraph network in ancient Greece see Aeneas Tacitus' optical communication system.

About 750
In Japan block printing is used for the first time.

868
In China the world's first dated book, the Diamond Sutra, is printed.

1041-1048
In China moveable types made from clay are invented.

1088
First European medieval university is established in Bologna.

The first of the great medieval universities was established in Bologna. At the beginning universities predominantly offered a kind of do-it-yourself publishing service.

Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so that you had your own copy of a book, thus enabling you to hold a lecture, too.

For further details see History of the Idea of a University, http://quarles.unbc.edu/ideas/net/history/history.html

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611796/100438659702
 
John Dee

b. July 13, 1527, London, England
d. December 1608, Mortlake, Surrey

English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595.

INDEXCARD, 1/3
 
Invention

According to the WIPO an invention is a "... novel idea which permits in practice the solution of a specific problem in the field of technology." Concerning its protection by law the idea "... must be new in the sense that is has not already been published or publicly used; it must be non-obvious in the sense that it would not have occurred to any specialist in the particular industrial field, had such a specialist been asked to find a solution to the particular problem; and it must be capable of industrial application in the sense that it can be industrially manufactured or used." Protection can be obtained through a patent (granted by a government office) and typically is limited to 20 years.

INDEXCARD, 2/3
 
Time Warner

The largest media and entertainment conglomerate in the world. The corporation resulted from the merger of the publisher Time Inc. and the media conglomerate Warner Communications Inc. in 1989. It acquired the Turner Broadcasting System, Inc. (TBS) in 1996. Time Warner Inc.'s products encompass magazines, hardcover books, comic books, recorded music, motion pictures, and broadcast and cable television programming and distribution. The company's headquarters are in New York City. In January 2000 Time Warner merged with AOL (America Online), which owns several online-services like Compuserve, Netscape and Netcenter in a US$ 243,3 billion deal.

INDEXCARD, 3/3