Timeline BC

~ 1900 BC: Egyptian writers use non-standard Hieroglyphs in inscriptions of a royal tomb; supposedly this is not the first but the first documented example of written cryptography

1500 an enciphered formula for the production of pottery is done in Mesopotamia

parts of the Hebrew writing of Jeremiah's words are written down in "atbash", which is nothing else than a reverse alphabet and one of the first famous methods of enciphering

4th century Aeneas Tacticus invents a form of beacons, by introducing a sort of water-clock

487 the Spartans introduce the so called "skytale" for sending short secret messages to and from the battle field

170 Polybius develops a system to convert letters into numerical characters, an invention called the Polybius Chequerboard.

50-60 Julius Caesar develops an enciphering method, later called the Caesar Cipher, shifting each letter of the alphabet an amount which is fixed before. Like atbash this is a monoalphabetic substitution.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659084
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Optical communication system by Aeneas Tacitus, 4th century B.C.

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook.

With communication separated from transportation, the distant became near.

Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

http://www.smith.edu/hsc/museum/ancient_inven...
INDEXCARD, 1/3
 
ciphers

the word "cipher" comes from the Hebrew word "saphar", meaning "to number". Ciphers are mere substitutions. Each letter of the alphabet gets substituted; maybe by one letter or two or more.

an example:
PLAINTEXT a b c d e f g h i j k l m n o p q r s t u v w x y z
CIPHERTEXT D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

INDEXCARD, 2/3
 
Invention of photo copies, 1727

Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but does not put them into practical use.

Not before 1843 the first optical photocopier was patented, when William Henry Fox Talbot got granted a patent for his magnifying apparatus.

In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. But not before 1902 images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as telecommunication service in Germany in 1922.

Source: Klaus Urbons, Copy Art. Kunst und Design mit dem Fotokopierer, Köln: Dumont, 1993 (2nd edition)

INDEXCARD, 3/3