Key-Systems As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce. Key cryptosystems try to provide more privacy. symmetric-key cryptosystems: The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it? In former times messengers or pigeons were doing the exchange of those keys. Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated. Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms. some symmetric-key systems are: - DES (Data Encryption Standard), the standard for credit cards - Triple-DES, which is a variation of DES, encrypting the plaintext three times. - IDEA (International Data Encryption Standard) - blowfish encryption algorithm, which is said to be faster than DES and IDEA Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not. For further information see: |
|
Asymmetric or Public-Key-Cryptosystems Here the keys for encryption and decryption differ. There needs to exist a private key, which is only known to the individual, and a public key, which is published. Every person has her or his own private key that is never published. It is used for decrypting only. Mathematically the different keys are linked to each other, still it is nearly impossible to derive the private key from the public one. For sending a message to someone, one has to look up the other's public key and encrypt the message with it. The keyholder will use his/her private key to decrypt it. While everybody can send a message with the public key, the private key absolutely has to stay secret - and probably will. "The best system is to use a simple, well understood algorithm which relies on the security of a key rather than the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all over." (Andrew Carol) very famous examples for public-key systems are: · RSA: The RSA is probably one of the most popular public-key cryptosystems. With the help of RSA, messages can be encrypted, but also digital signatures are provided. The mathematics behind are supposedly quite easy to understand (see: · PGP: PGP is a public key encryption program. Most of all it is used for e-mail encryption. It is supposed to be quite safe - until now. · PGPi is simply the international variation of PGP. for further information about the RSA and other key-systems visit the RSA homepage: or: All of those tools, like hash functions, too, can help to enhance security and prevent crime. They can theoretically, but sometimes they do not, as the example of the published credit card key of France in March 2000 showed. For more information see: Still, cryptography can help privacy. On the other hand cryptography is only one element to assure safe transport of data. It is especially the persons using it who have to pay attention. A key that is told to others or a lost cryptographic key are the end of secrecy. |
|
John Dee b. July 13, 1527, London, England d. December 1608, Mortlake, Surrey English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595. |
|
Invention According to the |
|