The 17th Century: The Invention of the First "Computers"

The devices often considered the first "computers" in our understanding were rather calculators than the sophisticated combination of hard- and software we call computers today.

In 1642 Blaise Pascal, the son of a French tax collector, developed a device to perform additions. His numerical wheel calculator was a brass rectangular box and used eight movable dials to add sums up to eight figures long. Designed to help his father with his duties, the big disadvantage of the Pascaline was its limitation to addition.

Gottfried Wilhelm von Leibniz, a German mathematician and philosopher, in 1694 improved the Pascaline by creating a machine that could also multiply. As its predecessor Leibniz's mechanical multiplier likewise worked by a system of gears and dials. Leibniz also formulated a model that may be considered the theoretical ancestor of some modern computers. In De Arte Combinatoria (1666) Leibniz argued that all reasoning, all discover, verbal or not, is reducible to an ordered combination of elements, such as numbers, words, colors, or sounds.

Further improvements in the field of early computing devices were made by Charles Xavier Thomas de Colmar, a Frenchmen. His arithometer could not only add and multiply, but perform the four basic arithmetic functions and was widely used up until the First World War.

TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611663/100438659397
 
acceleration

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611777/100438658418
 
On-line Advertising Revenues

Although Internet advertising only really started in 1994, revenues showed a steady and fast growth. In 1997 US$ 906.5 million were spent on on-line advertising. Compared with advertising revenue for the television industry in equivalent dollars for its third year, the Internet was slightly ahead, at US$ 907 million compared to television's US$ 834 million. 1998 on-line advertising grew by 112 percent to US$ 1.92 billion in revenues, and is on track to hit US$ 4 billion in 1999, which would put Internet advertising at about 2 percent of the U.S. ad market.

Table: Spending on On-Line Advertising by Category

(first quarter 1999)

Category

Percent

Consumer-related

27 %

Financial services

21 %

Computing

20 %

Retail/mail order

13 %

New media

8 %



Table: Types of On-Line Advertising

(first quarter 1999)

Type of Advertising

Percent

Banners

58 %

Sponsorships

29 %

Interstitials

6 %

E-mail

1 %

Others

6 %



Source: Internet Advertising Bureau (IAB).

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611652/100438657944
 
Sponsorship Models

With new sponsorship models being developed, even further influence over content from the corporate side can be expected. Co-operating with Barnes & Nobel Booksellers, the bookish e-zine FEED for instance is in part relying on sponsoring. Whenever a specific title is mentioned in the editorial, a link is placed in the margin - under the heading "Commerce" - to an appropriate page on Barnes & Noble. Steve Johnson, editor of FEED, says "We do not take a cut of any merchandise sold through those links.", but admits that the e-zine does indirectly profit from putting those links there.

TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611652/100438658034
 
Steganography

Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms.
Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee).
In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son.

for further details see:
http://home.att.net/~tleary/
http://www.thur.de/ulf/stegano/
http://www2.prestel.co.uk/littleton/gm2_rw.htm

One kind of steganogram is digital watermarking:
Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too.

Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe.
But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development.

for further information see:
http://www.isse.gmu.edu/~njohnson/Steganography

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438659021
 
Galileo Galilee

Galileo Galilee (1564-1642), the Italian Mathematician and Physicist is called the father of Enlightenment. He proofed the laws of the free fall, improved the technique for the telescope and so on. Galilee is still famous for his fights against the Catholic Church. He published his writings in Italian instead of writing in Latin. Like this, everybody could understand him, which made him popular. As he did not stop talking about the world as a ball (the Heliocentric World System) instead of a disk, the Inquisition put him on trial twice and forbid him to go on working on his experiments.

INDEXCARD, 1/4
 
Chappe's fixed optical network

Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores.

Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best.

Forerunners of Chappe's optical network are the Roman smoke signals network and Aeneas Tacitus' optical communication system.

For more information on early communication networks see Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks.

INDEXCARD, 2/4
 
Agostino Ramelli's reading wheel, 1588

Agostino Ramelli designed a "reading wheel" which allowed browsing through a large number of documents without moving from one spot.

Presenting a large number of books, a small library, laid open on lecterns on a kind of ferry-wheel, allowing us to skip chapters and to browse through pages by turning the wheel to bring lectern after lectern before our eyes, thus linking ideas and texts together, Ramelli's reading wheel reminds of today's browsing software used to navigate the World Wide Web.

INDEXCARD, 3/4
 
Medieval universities and copying of books

The first of the great medieval universities was established at Bologna. At the beginning, universities predominantly offered a kind of do-it-yourself publishing service.

Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so you had your own copy of a book, thus enabling you to hold a lecture, too.

For further details see History of the Idea of a University, http://quarles.unbc.edu/ideas/net/history/history.html

http://quarles.unbc.edu/ideas/net/history/his...
INDEXCARD, 4/4