Operating the net: overview

The Net consists of thousands of thousands of governmental and private networks linked together. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way of ever gaining ultimate control of the Internet. Although each of these networks is operated and controlled by an organization, no single organization operates and controls the Net. Instead of a central authority governing the Net, several bodies assure the operability of the Net by developing and setting technical specifications for the Net and by the control of the technical key functions of the Net as the coordination of the domain name system and the allocation of IP numbers.

Originally, the Net was a research project funded and maintained by the US Government and developed in collaboration by scientists and engineers. As the standards developed for ensuring operability ensued from technical functionality, technical coordination gradually grew out of necessity and was restricted to a minimum and performed by volunteers.

Later, in the 1980s, those occupied with the development of technical specifications organized themselves under the umbrella of the Internet Society in virtual organizations as the Internet Engineering Task Force, which were neither officially established nor being based on other structures than mailing lists and commitment, but nonetheless still serve as task forces for the development of standards ensuring the interoperability on the Net.

Since the late 80s and the early 90s, with the enormous growth of the Net - which was promoted by the invention of Local Area Networks, the creation of the World Wide Web, the increased use of personal computers and the connecting of corporations to the Net, just to name a few - coordination of some technical key functions as the domain name system was handed over to corporations as Network Solutions Inc.

Since the year 2000, a new model for technical coordination has been emerging: Formerly performed by several bodies, technical coordination is transferred to a single non-governmental organization: the Internet Coordination of Assigned Numbers and Names.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611791/100438659824
 
Cryptography's Terms and background

"All nature is merely a cipher and a secret writing."
Blaise de Vigenère

In the (dis-)information age getting information but at the same time excluding others from it is part of a power-game (keeping the other uneducated). The reason for it eventually has found an argument called security.
Compared to the frequency of its presence in articles, the news and political speeches security seems to be one of the most popular words of the 90's. It must be a long time ago when that word was only used for and by the military and the police. Today one can find it as part of every political issue. Even development assistance and nutrition programs consider it part of its work.
The so-called but also real need for information security is widespread and concerning everybody, whether someone uses information technology or not. In any case information about individuals is moving globally; mostly sensitive information like about bank records, insurance and medical data, credit card transactions, and much much more. Any kind of personal or business communication, including telephone conversations, fax messages, and of course e-mail is concerned. Not to forget further financial transactions and business information. Almost every aspect of modern life is affected.
We want to communicate with everybody - but do not want anybody to know.

Whereas the market already depends on the electronic flow of information and the digital tools get faster and more sophisticated all the time, the rise of privacy and security concerns have to be stated as well.
With the increase of digital communication its vulnerability is increasing just as fast. And there exist two (or three) elements competing and giving the term digital security a rather drastic bitter taste: this is on the one hand the growing possibility for criminals to use modern technology not only to hide their source and work secretly but also to manipulate financial and other transfers. On the other hand there are the governments of many states telling the population that they need access to any kind of data to keep control against those criminals. And finally there are those people, living between enlightening security gaps and at the same time harming other private people's actions with their work: computer hackers.
While the potential of global information is regarded as endless, it is those elements that reduce it.

There is no definite solution, but at least some tools have been developed to improve the situation: cryptography, the freedom to encode those data that one does not want to be known by everybody, and give a possibility to decode them to those who shall know the data.

During the last 80 years cryptography has changed from a mere political into a private, economic but still political tool: at the same time it was necessary to improve the tools, eventually based on mathematics. Hence generally cryptography is regarded as something very complicated. And in many ways this is true as the modern ways of enciphering are all about mathematics.

"Crypto is not mathematics, but crypto can be highly mathematical, crypto can use mathematics, but good crypto can be done without a great reliance on complex mathematics." (W.T. Shaw)

For an introduction into cryptography and the mathematical tasks see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/index.htm
http://www.ccc.de/CCC-CA/policy.html

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438658895
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Steganography

Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms.
Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee).
In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son.

for further details see:
http://home.att.net/~tleary/
http://www.thur.de/ulf/stegano/
http://www2.prestel.co.uk/littleton/gm2_rw.htm

One kind of steganogram is digital watermarking:
Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too.

Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe.
But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development.

for further information see:
http://www.isse.gmu.edu/~njohnson/Steganography

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438659021
 
Local Area Network (LAN)

A Local Area Network is an office network, a network restricted to a building area.

INDEXCARD, 1/3
 
Intelsat

Intelsat, the world's biggest communication satellite services provider, is still mainly owned by governments, but will be privatised during 2001, like Eutelsat. A measure already discussed 1996 at an OECD competition policy roundtable in 1996. Signatory of the Intelsat treaty for the United States of America is Comsat, a private company listed on the New York Stock Exchange. Additionally Comsat is one of the United Kingdom's signatories. Aggregated, Comsat owns about 20,5% of Intelsat already and is Intelsat's biggest shareholder. In September 1998 Comsat agreed to merge with Lockheed Martin. After the merger, Lockheed Martin will hold at least 49% of Comsat share capital.

http://www.intelsat.int/index.htm

http://www.eutelsat.org/
http://www.oecd.org//daf/clp/roundtables/SATS...
http://www.comsat.com/
http://www.nyse.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
INDEXCARD, 2/3
 
Backbone Networks

Backbone networks are central networks usually of very high bandwidth, that is, of very high transmitting capacity, connecting regional networks. The first backbone network was the NSFNet run by the National Science Federation of the United States.

INDEXCARD, 3/3