Feeding the data body

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
 
Late 1950s - Early 1960s: Second Generation Computers

An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.

Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.

Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
 
Legal Protection: National Legislation

Intellectual property - comprising industrial property and copyright - in general is protected by national legislation. Therefore those rights are limited territorially and can be exercised only within the jurisdiction of the country or countries under whose laws they are granted.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611725/100438659540
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Total copyright industries

The total copyright industries encompass the "core copyright industries" and portions of many other industries that either create, distribute, or depend upon copyrighted works. Examples include retail trade (a portion of which is sales of video, audio, software, and books, for example), the doll and toy industry, and computer manufacturing.


INDEXCARD, 1/7
 
Caching

Caching is a mechanism that attempts to decrease the time it takes to retrieve data by storing a copy at a closer location.

INDEXCARD, 2/7
 
National Science Foundation (NSF)

Established in 1950, the National Science Foundation is an independent agency of the U.S. government dedicated to the funding in basic research and education in a wide range of sciences and in mathematics and engineering. Today, the NSF supplies about one quarter of total federal support of basic scientific research at academic institutions.

http://www.nsf.gov

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/0/0,5716,2450+1+2440,00.html

http://www.nsf.gov/
INDEXCARD, 3/7
 
John Dee

b. July 13, 1527, London, England
d. December 1608, Mortlake, Surrey

English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595.

INDEXCARD, 4/7
 
Proprietary Network

Proprietary networks are computer networks with standards different to the ones proposed by the International Standardization Organization (ISO), the Open Systems Interconnection (OSI). Designed to conform to standards implemented by the manufacturer, compatibility to other network standards is not assured.

INDEXCARD, 5/7
 
Enochian alphabet

Also "Angelic" language. Archaic language alphabet composed of 21 letters, discovered by John Dee and his partner Edward Kelley. It has its own grammar and syntax, but only a small sample of it has ever been translated to English.

INDEXCARD, 6/7
 
Economic rights

The economic rights (besides moral rights and in some cases also neighboring rights) granted to the owners of copyright usually include 1) copying or reproducing a work, 2) performing a work in public, 3) making a sound recording of a work, 4) making a motion picture of a work, 5) broadcasting a work, 6) translating a work and 7) adapting a work. Under certain national laws some of these rights are not exclusive rights of authorization but in specific cases, merely rights to remuneration.

INDEXCARD, 7/7