On-line Advertising Revenues

Although Internet advertising only really started in 1994, revenues showed a steady and fast growth. In 1997 US$ 906.5 million were spent on on-line advertising. Compared with advertising revenue for the television industry in equivalent dollars for its third year, the Internet was slightly ahead, at US$ 907 million compared to television's US$ 834 million. 1998 on-line advertising grew by 112 percent to US$ 1.92 billion in revenues, and is on track to hit US$ 4 billion in 1999, which would put Internet advertising at about 2 percent of the U.S. ad market.

Table: Spending on On-Line Advertising by Category

(first quarter 1999)

Category

Percent

Consumer-related

27 %

Financial services

21 %

Computing

20 %

Retail/mail order

13 %

New media

8 %



Table: Types of On-Line Advertising

(first quarter 1999)

Type of Advertising

Percent

Banners

58 %

Sponsorships

29 %

Interstitials

6 %

E-mail

1 %

Others

6 %



Source: Internet Advertising Bureau (IAB).

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611652/100438657944
 
FREEnet (The Network for Research, Education and Engineering)

FREEnet is an academic and research network, interconnecting computer networks of research institutes of the Russian Academy of Sciences, universities, colleges, and other research and academic institutions. It was established in 1991 by the N.D. Zelinsky Institute of Organic Chemistry at the Center of Computer Assistance to Chemical Research. It provides its more than 350 members of the academic and educational community with all types of basic Internet services and various information services.

Strategies and Policies

FREEnets general intention is to become a backbone infrastructure providing:

Open networking services for efficient access to the network and information resources located both in Russia and all over the Internet.

Reliable network connectivity for research, academic and educational communities in Russia and abroad.

Worldwide access to science and information resources of the Russian Academy of Sciences, universities and colleges in Russia.

Assistance to the progress of Russian based fundamental research.

Assistance to the development and application of modern information technologies in education.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611734/100438659253
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Intelsat

Intelsat, the world's biggest communication satellite services provider, is still mainly owned by governments, but will be privatised during 2001, like Eutelsat. A measure already discussed 1996 at an OECD competition policy roundtable in 1996. Signatory of the Intelsat treaty for the United States of America is Comsat, a private company listed on the New York Stock Exchange. Additionally Comsat is one of the United Kingdom's signatories. Aggregated, Comsat owns about 20,5% of Intelsat already and is Intelsat's biggest shareholder. In September 1998 Comsat agreed to merge with Lockheed Martin. After the merger, Lockheed Martin will hold at least 49% of Comsat share capital.

http://www.intelsat.int/index.htm

http://www.eutelsat.org/
http://www.oecd.org//daf/clp/roundtables/SATS...
http://www.comsat.com/
http://www.nyse.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
INDEXCARD, 1/4
 
Internet Exchanges

Internet exchanges are intersecting points between major networks.

List of the World's Public Internet exchanges (http://www.ep.net)

http://www.ep.net/
INDEXCARD, 2/4
 
Aeneas Tacticus

Supposedly his real name was Aeneas of Stymphalus. He was a Greek military scientist and cryptographer. He invented an optical system for communication similar to a telegraph: the water-clocks.

INDEXCARD, 3/4
 
Public Relations Consultants Association (PRCA)

The PRCA was formed in November 1969 as an association limited by guarantee of up to £5 per member and therefore has no share capital. The PRCA tries to encourage and promote the advancement of companies and firms engaged in public relations consultancy..

INDEXCARD, 4/4