Timeline 1970-2000 AD

1971 IBM's work on the Lucifer cipher and the work of the NSA lead to the U.S. Data Encryption Standard (= DES)

1976 Whitfield Diffie and Martin Hellman publish their book New Directions in Cryptography, playing with the idea of public key cryptography

1977/78 the RSA algorithm is developed by Ron Rivest, Adi Shamir and Leonard M. Adleman and is published

1984 Congress passes Comprehensive Crime Control Act

- The Hacker Quarterly is founded

1986 Computer Fraud and Abuse Act is passed in the USA

- Electronic Communications Privacy Act

1987 Chicago prosecutors found Computer Fraud and Abuse Task Force

1988 U.S. Secret Service covertly videotapes a hacker convention

1989 NuPrometheus League distributes Apple Computer software

1990 - IDEA, using a 128-bit key, is supposed to replace DES

- Charles H. Bennett and Gilles Brassard publish their work on Quantum Cryptography

- Martin Luther King Day Crash strikes AT&T long-distance network nationwide


1991 PGP (= Pretty Good Privacy) is released as freeware on the Internet, soon becoming worldwide state of the art; its creator is Phil Zimmermann

- one of the first conferences for Computers, Freedom and Privacy takes place in San Francisco

- AT&T phone crash; New York City and various airports get affected

1993 the U.S. government announces to introduce the Clipper Chip, an idea that provokes many political discussions during the following years

1994 Ron Rivest releases another algorithm, the RC5, on the Internet

- the blowfish encryption algorithm, a 64-bit block cipher with a key-length up to 448 bits, is designed by Bruce Schneier

1990s work on quantum computer and quantum cryptography

- work on biometrics for authentication (finger prints, the iris, smells, etc.)

1996 France liberates its cryptography law: one now can use cryptography if registered

- OECD issues Cryptography Policy Guidelines; a paper calling for encryption exports-standards and unrestricted access to encryption products

1997 April European Commission issues Electronic Commerce Initiative, in favor of strong encryption

1997 June PGP 5.0 Freeware widely available for non-commercial use

1997 June 56-bit DES code cracked by a network of 14,000 computers

1997 August U.S. judge assesses encryption export regulations as violation of the First Amendment

1998 February foundation of Americans for Computer Privacy, a broad coalition in opposition to the U.S. cryptography policy

1998 March PGP announces plans to sell encryption products outside the USA

1998 April NSA issues a report about the risks of key recovery systems

1998 July DES code cracked in 56 hours by researchers in Silicon Valley

1998 October Finnish government agrees to unrestricted export of strong encryption

1999 January RSA Data Security, establishes worldwide distribution of encryption product outside the USA

- National Institute of Standards and Technologies announces that 56-bit DES is not safe compared to Triple DES

- 56-bit DES code is cracked in 22 hours and 15 minutes

1999 May 27 United Kingdom speaks out against key recovery

1999 Sept: the USA announce to stop the restriction of cryptography-exports

2000 as the German government wants to elaborate a cryptography-law, different organizations start a campaign against that law

- computer hackers do no longer only visit websites and change little details there but cause breakdowns of entire systems, producing big economic losses

for further information about the history of cryptography see:
http://www.clark.net/pub/cme/html/timeline.html
http://www.math.nmsu.edu/~crypto/Timeline.html
http://fly.hiwaay.net/~paul/cryptology/history.html
http://www.achiever.com/freehmpg/cryptology/hocryp.html
http://all.net/books/ip/Chap2-1.html
http://cryptome.org/ukpk-alt.htm
http://www.iwm.org.uk/online/enigma/eni-intro.htm
http://www.achiever.com/freehmpg/cryptology/cryptofr.html
http://www.cdt.org/crypto/milestones.shtml

for information about hacker's history see:
http://www.farcaster.com/sterling/chronology.htm:

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438658960
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Abstract

What we seem to fear most is to get into a status of insecurity - given that the definitions of the word security vary extremely. Thus methods of securing ideas, people, things or data increase their popularity and necessity tremendously. One of them is cryptography - as well as the prohibition/restriction of cryptography.
Questions whether cryptography is absolutely inevitable or on the contrary supports certain criminals more than the ordinary internet-user, are arising. And as the last developments in international and national law showed, Northern governments are changing opinion about that, due to economic tasks.
Business needs cryptography.
Still, the use of cryptography is no recent invention. Already the first steps in writing or even in human communication itself meant developing codes for keeping secrets at the same time as providing information.

This site gives a timeline for the history of cryptography, provides an introduction into the most important terms of tools and devices connected to that topic, and finally tries to interpret necessities for and ideas against cryptography or in other words leads through the current discussions concerning democracy and governmental fears and doubts regarding the security of data-transmission.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438658887
 
Moral rights

Authors of copyrighted works (besides economic rights) enjoy moral rights on the basis of which they have the right to claim their authorship and require that their names be indicated on the copies of the work and in connection with other uses thereof. Moral rights are generally inalienable and remain with the creator even after he has transferred his economic rights, although the author may waive their exercise.

INDEXCARD, 1/3
 
MIT

The MIT (Massachusetts Institute of Technology) is a privately controlled coeducational institution of higher learning famous for its scientific and technological training and research. It was chartered by the state of Massachusetts in 1861 and became a land-grant college in 1863. During the 1930s and 1940s the institute evolved from a well-regarded technical school into an internationally known center for scientific and technical research. In the days of the Great Depression, its faculty established prominent research centers in a number of fields, most notably analog computing (led by Vannevar Bush) and aeronautics (led by Charles Stark Draper). During World War II, MIT administered the Radiation Laboratory, which became the nation's leading center for radar research and development, as well as other military laboratories. After the war, MIT continued to maintain strong ties with military and corporate patrons, who supported basic and applied research in the physical sciences, computing, aerospace, and engineering. MIT has numerous research centers and laboratories. Among its facilities are a nuclear reactor, a computation center, geophysical and astrophysical observatories, a linear accelerator, a space research center, supersonic wind tunnels, an artificial intelligence laboratory, a center for cognitive science, and an international studies center. MIT's library system is extensive and includes a number of specialized libraries; there are also several museums.

INDEXCARD, 2/3
 
Neighboring rights

Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large.

INDEXCARD, 3/3