Governmental Regulations

The new U.S. regulations are based on the Wassenaar Arrangement Revision of 1998, where exports without license of 56 bit DES and similar products are allowed after a technical review, just like encryption commodities and software with key lengths of 64-bits or less which meet the mass market requirements.
For more information see:
http://www.wassenaar.org/

Seven states stay excluded from the new freedom. These are states like Libya, Iraq, Iran, North Korea and Cuba, altogether states seen as terrorist supporting. No encryption tools may be exported into those countries.

This is, what happened in the USA, whereas in Germany the issue of a cryptography-law is still on the agenda. Until now, in Germany, everyone can decide by her-/himself, whether she/he wants to encrypt electronic messages or not. Some organizations fear that this could get changed soon. Therefore an urgent action was organized in February 2000 to demonstrate the government that people want the freedom to decide on their own. One governmental argument is that only very few people actually use cryptography. Therefore the urgent action is organized as a campaign for using it more frequently.

For more information on this see:
http://www.heise.de/ct/97/04/032/
http://www.fitug.de/ulf/krypto/verbot.html#welt

Other European countries have more liberate laws on cryptography, like France. Austria doesn't have any restrictions at all, probably because of a governmental lack of interest more than accepting freedom.
The (former) restrictions in the bigger countries influenced and hindered developments for safer key-systems, e.g. the key-length was held down extraordinarily.

"Due to the suspicious nature of crypto users I have a feeling DES will be with us forever, we will just keep adding keys and cycles (...). There is a parallel between designing electronic commerce infrastructure today that uses weak cryptography (i.e. 40 or 56 bit keys) and, say, designing air traffic control systems in the '60s using two digit year fields. (...) Just because you can retire before it all blows up doesn't make it any less irresponsible."
(Arnold G. Reinhold)


The Chinese State Encryption Management Commission (SEMC) announced in March 2000 that only strong encryption tools will have to be registered in the future. Which sounds so nice on first sight, does not mean a lot in reality: any kind of useful encryption technique, like the PGP, stay under governmental control.

The restrictions and prohibitions for cryptography are part of the states' wish to acquire more control - in the name of the battle against criminality, probably?
Due to the emerging organized criminality the governments want to obtain more freedom of control over citizens. Organizations like the NSA appear as the leaders of such demands.
What about civil rights or Human Rights?

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659135
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
DES

The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys.

for more information see:
http://www.britannica.com/bcom/eb/article/3/0,5716,117763+5,00.html
http://www.cryptography.com/des/

http://www.britannica.com/bcom/eb/article/3/0...
http://www.cryptography.com/des/
INDEXCARD, 1/3
 
PGP

A cryptographic software application that was developed by Phil Zimmerman at the Massachusetts Institute of Technology. Pretty Good Privacy (PGP) is a cryptographic product family that enables people to securely exchange messages, and to secure files, disk volumes and network connections with both privacy and strong authentication.

INDEXCARD, 2/3
 
water-clocks

The water-clocks are an early long-distance-communication-system. Every communicating party had exactly the same jar, with a same-size-hole that was closed and the same amount of water in it. In the jar was a stick with different messages written on. When one party wanted to tell something to the other it made a fire-sign. When the other answered, both of them opened the hole at the same time. And with the help of another fire-sign closed it again at the same time, too. In the end the water covered the stick until the point of the wanted message.

INDEXCARD, 3/3