Definition

During the last 20 years the old Immanuel Wallerstein-paradigm of center - periphery and semi-periphery found a new costume: ICTs. After Colonialism, Neo-Colonialism and Neoliberalism a new method of marginalization is emerging: the digital divide.

"Digital divide" describes the fact that the world can be divided into people who
do and people who do not have access to (or the education to handle with) modern information technologies, e.g. cellular telephone, television, Internet. This digital divide is concerning people all over the world, but as usually most of all people in the formerly so called third world countries and in rural areas suffer; the poor and less-educated suffer from that divide.
More than 80% of all computers with access to the Internet are situated in larger cities.

"The cost of the information today consists not so much of the creation of content, which should be the real value, but of the storage and efficient delivery of information, that is in essence the cost of paper, printing, transporting, warehousing and other physical distribution means, plus the cost of the personnel manpower needed to run these `extra' services ....Realizing an autonomous distributed networked society, which is the real essence of the Internet, will be the most critical issue for the success of the information and communication revolution of the coming century of millennium."
(Izumi Aizi)

for more information see:
http://www.whatis.com/digital_divide.htm

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611730/100438659300
 
Intellectual Property: A Definition

Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches:

1) Industrial Property

a) Inventions
b) Marks (trademarks and service marks)
c) Industrial designs
d) Unfair competition (trade secrets)
e) Geographical indications (indications of source and appellations of origin)

2) Copyright

The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659434
 
Databody convergence

In the phrase "the rise of the citizen as a consumer", to be found on the EDS website, the cardinal political problem posed by the databody industry is summarised: the convergence of commercial and political interest in the data body business, the convergence of bureaucratic and commercial data bodies, the erosion of privacy, and the consequent undermining of democratic politics by private business interest.

When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors.

There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: Experian has claimed to lose LST 500 mn as a consequence of this restriction - a figure that, even if exaggerated, may help to understand what the value of personal data actually is.

While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions.

Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control.

The world's largest data corporation, EDS, is also among the foremost outsourcing companies. In an article about EDS' involvement in government outsourcing in Britain, Simon Davies shows how the general trend towards outsourcing combined with advances in computer technology allow companies EDS, outside of any public accountability, to create something like blueprints for the societies of the 21st century. But the problem of accountability is not the only one to be considered in this context. As Davies argues, the data business is taking own its own momentum "a ruthless company could easily hold a government to ransom". As the links between government agencies and citizens thin out, however, the links among the various agencies might increase. Linking the various government information systems would amount to further increase in efficiency, and a further undermining of democracy. The latter, after all, relies upon the separation of powers - matching government information systems would therefore pave the way to a kind of electronic totalitarianism that has little to do with the ideological bent of George Orwell's 1984 vision, but operates on purely technocratic principles.

Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating

But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means.

However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611761/100438659769
 
Punch card, 1801

Invented by Joseph Marie Jacquard, an engineer and architect in Lyon, France, the punch cards laid the ground for automatic information processing. For the first time information was stored in binary format on perforated cardboard cards. In 1890 Hermann Hollerith used Joseph-Marie Jacquard's punch card technology for processing statistical data retrieved from the US census in 1890, thus speeding up data analysis from eight to three years. His application of Jacquard's invention was also used for programming computers and data processing until electronic data processing was introduced in the 1960's. - As with writing and calculating, administrative purposes account for the beginning of modern automatic data processing.

Paper tapes are a medium similar to Jacquard's punch cards. In 1857 Sir Charles Wheatstone applied them as a medium for the preparation, storage, and transmission of data for the first time. By their means, telegraph messages could be prepared off-line, sent ten times quicker (up to 400 words per minute), and stored. Later similar paper tapes were used for programming computers.

INDEXCARD, 1/2
 
Neural network

A bottom-up artificial intelligence approach, a neural network is a network of many very simple processors ("units" or "neurons"), each possibly having a (small amount of) local memory. The units are connected by unidirectional communication channels ("connections"), which carry numeric data. The units operate only on their local data and on the inputs they receive via the connections. A neural network is a processing device, either an algorithm, or actual hardware, whose design was inspired by the design and functioning of animal brains and components thereof. Most neural networks have some sort of "training" rule whereby the weights of connections are adjusted on the basis of presented patterns. In other words, neural networks "learn" from examples and exhibit some structural capability for generalization.

INDEXCARD, 2/2