The history of propaganda

Thinking of propaganda some politicians' names are at once remembered, like Caesar, Napoleon, Adolf Hitler, Joseph Stalin or Saddam Hussein.
The history of propaganda has to tell then merely mentioning those names:

TEXTBLOCK 1/27 // URL: http://world-information.org/wio/infostructure/100437611661/100438658185
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 2/27 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Timeline Cryptography - Introduction

Besides oral conversations and written language many other ways of information-transport are known: like the bush telegraph, drums, smoke signals etc. Those methods are not cryptography, still they need en- and decoding, which means that the history of language, the history of communication and the history of cryptography are closely connected to each other
The timeline gives an insight into the endless fight between enciphering and deciphering. The reasons for them can be found in public and private issues at the same time, though mostly connected to military maneuvers and/or political tasks.

One of the most important researchers on Cryptography through the centuries is David Kahn; many parts of the following timeline are originating from his work.

TEXTBLOCK 3/27 // URL: http://world-information.org/wio/infostructure/100437611776/100438658824
 
Atrocity Stories

Atrocity stories are nothing else than lies; the two words "atrocity stories" simply pretend to be more diplomatic.
The purpose is to destroy an image of the enemy, to create a new one, mostly a bad one. The story creating the image is not necessarily made up completely. It can also be a changed into a certain variable direction.
The most important thing about atrocity stories is to follow the line of possibility. Even if the whole story is made up it must be probable or at least possible, following rumors. Most successful might it be if a rumor is spread on purpose, some time before the atrocity story is launched, because as soon as something seems to be familiar, it is easier to believe it.

TEXTBLOCK 4/27 // URL: http://world-information.org/wio/infostructure/100437611661/100438658524
 
Challenges for Copyright by ICT: Copyright Owners

The main concern of copyright owners as the (in terms of income generation) profiteers of intellectual property protection is the facilitation of pirate activities in digital environments.

Reproduction and Distribution

Unlike copies of works made using analog copiers (photocopy machines, video recorders etc.) digital information can be reproduced extremely fast, at low cost and without any loss in quality. Since each copy is a perfect copy, no quality-related limits inhibit pirates from making as many copies as they please, and recipients of these copies have no incentive to return to authorized sources to get another qualitatively equal product. Additionally the costs of making one extra copy of intellectual property online are insignificant, as are the distribution costs if the copy is moved to the end user over the Internet.

Control and Manipulation

In cross-border, global data networks it is almost impossible to control the exploitation of protected works. Particularly the use of anonymous remailers and other existing technologies complicates the persecution of pirates. Also digital files are especially vulnerable to manipulation, of the work itself, and of the (in some cases) therein-embedded copyright management information.

TEXTBLOCK 5/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659526
 
Late 1950s - Early 1960s: Second Generation Computers

An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.

Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.

Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.

TEXTBLOCK 6/27 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
 
How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 7/27 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
Intellectual Property and the "Information Society" Metaphor

Today the talk about the so-called "information society" is ubiquitous. By many it is considered as the successor of the industrial society and said to represent a new form of societal and economical organization. This claim is based on the argument, that the information society uses a new kind of resource, which fundamentally differentiates from that of its industrial counterpart. Whereas industrial societies focus on physical objects, the information society's raw material is said to be knowledge and information. Yet the conception of the capitalist system, which underlies industrial societies, also continues to exist in an information-based environment. Although there have been changes in the forms of manufacture, the relations of production remain organized on the same basis. The principle of property.

In the context of a capitalist system based on industrial production the term property predominantly relates to material goods. Still even as in an information society the raw materials, resources and products change, the concept of property persists. It merely is extended and does no longer solely consider physical objects as property, but also attempts to put information into a set of property relations. This new kind of knowledge-based property is widely referred to as "intellectual property". Although intellectual property in some ways represents a novel form of property, it has quickly been integrated in the traditional property framework. Whether material or immaterial products, within the capitalist system they are both treated the same - as property.

TEXTBLOCK 8/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659429
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 9/27 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Hill & Knowlton

Although it is generally hard to distinguish between public relations and propaganda, Hill & Knowlton, the worlds leading PR agency, represents an extraordinary example for the manipulation of public opinion with public relations activities. Hill & Knowlton did not only lobby for countries, accused of the abuse of human rights, like China, Peru, Israel, Egypt and Indonesia, but also represented the repressive Duvalier regime in Haiti.

It furthermore played a central role in the Gulf War. On behalf of the Kuwaiti government it presented a 15-year-old girl to testify before Congress about human rights violations in a Kuwaiti hospital. The girl, later found out to be the daughter of Kuwait's ambassador to the U.S., and its testimony then became the centerpiece of a finely tuned PR campaign orchestrated by Hill & Knowlton and co-ordinated with the White House on behalf of the government of Kuwait an the Citizens for a Free Kuwait group. Inflaming public opinion against Iraq and bringing the U.S. Congress in favor of war in the Gulf, this probably was one of the largest and most effective public relations campaigns in history.

Running campaigns against abortion for the Catholic Church and representing the Church of Scientology, large PR firms like Hill & Knowlton, scarcely hesitate to manipulate public and congressional opinion and government policy through media campaigns, congressional hearings, and lobbying, when necessary. Also co-operation with intelligence agencies seems to be not unknown to Hill & Knowlton.

Accused of pursuing potentially illegal proxy spying operation for intelligence agencies, Richard Cheney, head of Hill & Knowltons New York office, denied this allegations, but said that "... in such a large organization you never know if there's not some sneak operation going on." On the other hand former CIA official Robert T. Crowley acknowledged, that "Hill & Knowlton's overseas offices were perfect 'cover` for the ever-expanding CIA. Unlike other cover jobs, being a public relations specialist did not require technical training for CIA officers." Furthermore the CIA, Crowley admitted, used its Hill & Knowlton connections to "... put out press releases and make media contacts to further its positions. ... Hill & Knowlton employees at the small Washington office and elsewhere distributed this material through CIA assets working in the United States news media."

(Source: Carlisle, Johan: Public Relationships: Hill & Knowlton, Robert Gray, and the CIA. http://mediafilter.org/caq/)

TEXTBLOCK 10/27 // URL: http://world-information.org/wio/infostructure/100437611652/100438658088
 
Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 11/27 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
Basics: Acquisition of Copyright

The laws of almost all countries provide that protection is independent of any formalities. Copyright protection then starts as soon as the work is created.

TEXTBLOCK 12/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659576
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 13/27 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Challenges for Copyright by ICT: Digital Content Providers

Providers of digital information might be confronted with copyright related problems when using some of the special features of hypertext media like frames and hyperlinks (which both use third party content available on the Internet to enhance a webpage or CD ROM), or operate a search engine or online directory on their website.

Framing

Frames are often used to help define, and navigate within, a content provider's website. Still, when they are used to present (copyrighted) third party material from other sites issues of passing off and misleading or deceptive conduct, as well as copyright infringement, immediately arise.

Hyperlinking

It is generally held that the mere creation of a hyperlink does not, of itself, infringe copyright as usually the words indicating a link or the displayed URL are unlikely to be considered a "work". Nevertheless if a link is clicked on the users browser will download a full copy of the material at the linked address creating a copy in the RAM of his computer courtesy of the address supplied by the party that published the link. Although it is widely agreed that the permission to download material over the link must be part of an implied license granted by the person who has made the material available on the web in the first place, the scope of this implied license is still the subject of debate. Another option that has been discussed is to consider linking fair use.

Furthermore hyperlinks, and other "information location tools", like online directories or search engines could cause their operators trouble if they refer or link users to a site that contains infringing material. In this case it is yet unclear whether providers can be held liable for infringement.

TEXTBLOCK 14/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659590
 
Individualized Audience Targeting

New opportunities for online advertisers arise with the possibility of one-to-one Web applications. Software agents for example promise to "register, recognize and manage end-user profiles; create personalized communities on-line; deliver personalized content to end-users and serve highly targeted advertisements". The probably ultimate tool for advertisers. Although not yet widely used, companies like Amazon.Com have already started to exploit individualized audience targeting for their purposes.

TEXTBLOCK 15/27 // URL: http://world-information.org/wio/infostructure/100437611652/100438658450
 
Enforcement: Copyright Management and Control Technologies

With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of copyright management systems. Technological protection for their works, the copyright industry argues, is necessary to prevent widespread infringement, thus giving them the incentive to make their works available online. In their view the ideal technology should be "capable of detecting, preventing, and counting a wide range of operations, including open, print, export, copying, modifying, excerpting, and so on." Additionally such systems could be used to maintain "records indicating which permissions have actually been granted and to whom".

TEXTBLOCK 16/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659674
 
Feeding the data body

TEXTBLOCK 17/27 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
 
Data bunkers

Personal data are collected, appropriated, processed and used for commercial purposes on a global scale. In order for such a global system to operate smoothly, there a server nodes at which the data streams converge. Among the foremost of these are the data bases of credit card companies, whose operation has long depended on global networking.

On top of credit card companies such as Visa, American Express, Master Card, and others. It would be erroneous to believe that the primary purpose of business of these companies is the provision of credit, and the facilitation of credit information for sale transactions. In fact, Information means much more than just credit information. In an advertisement of 1982, American Express described itself in these terms: ""Our product is information ...Information that charges airline tickets, hotel rooms, dining out, the newest fashions ...information that grows money funds buys and sells equities ...information that pays life insurance annuities ...information that schedules entertainment on cable television and electronically guards houses ...information that changes kroners into guilders and figures tax rates in Bermuda ..."

Information has become something like the gospel of the New Economy, a doctrine of salvation - the life blood of society, as Bill Gates expresses it. But behind information there are always data that need to be generated and collected. Because of the critical importance of data to the economy, their possession amounts to power and their loss can cause tremendous damage. The data industry therefore locates its data warehouses behind fortifications that bar physical or electronic access. Such structures are somewhat like a digital reconstruction of the medieval fortress

Large amounts of data are concentrated in fortress-like structures, in data bunkers. As the Critical Art Ensemble argue in Electronic Civil Disobedience: "The bunker is the foundation of homogeneity, and allows only a singular action within a given situation." All activities within data bunker revolve around the same principle of calculation. Calculation is the predominant mode of thinking in data-driven societies, and it reaches its greatest density inside data bunkers. However, calculation is not a politically neutral activity, as it provides the rational basis - and therefore the formal legitimisation most every decision taken. Data bunkers therefore have an essentially conservative political function, and function to maintain and strengthen the given social structures.

TEXTBLOCK 18/27 // URL: http://world-information.org/wio/infostructure/100437611761/100438659754
 
Internet, Intranets, Extranets, and Virtual Private Networks

With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are proprietary networks.

Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term "proprietary networks" into terms to be explained and speak of Intranets, Extranets, and Virtual Private Networks.

Cable TV networks and online services as Europe Online, America Online, and Microsoft Network are also proprietary networks. Although their services resemble Internet services, they offer an alternative telecommunication infrastructure with access to Internet services for their subscribers.
America Online is selling its service under the slogan "We organize the Web for you!" Such promises are more frightening than promising because "organizing" is increasingly equated with "filtering" of seemingly objectionable messages and "rating" of content. For more information on these issues, click here If you want to know more about the technical nature of computer networks, here is a link to the corresponding article in the Encyclopaedia Britannica.

Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Society for Worldwide Interbank Financial Telecommunication (SWIFT). According to SWIFT, in 1998 the average daily value of payments messages was estimated to be above U$ 2 trillion.

Electronic Communications Networks as Instinet force stock exchanges to redefine their positions in trading of equities. They offer faster trading at reduced costs and better prices on trades for brokers and institutional investors as mutual funds and pension funds. Last, but not least clients are not restricted to trading hours and can trade anonymously and directly, thereby bypassing stock exchanges.

TEXTBLOCK 19/27 // URL: http://world-information.org/wio/infostructure/100437611791/100438658384
 
Databody convergence

In the phrase "the rise of the citizen as a consumer", to be found on the EDS website, the cardinal political problem posed by the databody industry is summarised: the convergence of commercial and political interest in the data body business, the convergence of bureaucratic and commercial data bodies, the erosion of privacy, and the consequent undermining of democratic politics by private business interest.

When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors.

There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: Experian has claimed to lose LST 500 mn as a consequence of this restriction - a figure that, even if exaggerated, may help to understand what the value of personal data actually is.

While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions.

Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control.

The world's largest data corporation, EDS, is also among the foremost outsourcing companies. In an article about EDS' involvement in government outsourcing in Britain, Simon Davies shows how the general trend towards outsourcing combined with advances in computer technology allow companies EDS, outside of any public accountability, to create something like blueprints for the societies of the 21st century. But the problem of accountability is not the only one to be considered in this context. As Davies argues, the data business is taking own its own momentum "a ruthless company could easily hold a government to ransom". As the links between government agencies and citizens thin out, however, the links among the various agencies might increase. Linking the various government information systems would amount to further increase in efficiency, and a further undermining of democracy. The latter, after all, relies upon the separation of powers - matching government information systems would therefore pave the way to a kind of electronic totalitarianism that has little to do with the ideological bent of George Orwell's 1984 vision, but operates on purely technocratic principles.

Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating

But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means.

However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone.

TEXTBLOCK 20/27 // URL: http://world-information.org/wio/infostructure/100437611761/100438659769
 
Legal Protection: National Legislation

Intellectual property - comprising industrial property and copyright - in general is protected by national legislation. Therefore those rights are limited territorially and can be exercised only within the jurisdiction of the country or countries under whose laws they are granted.

TEXTBLOCK 21/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659540
 
Biometric technologies

In what follows there is a brief description of the principal biometric technologies, whose respective proponents - producers, research laboratories, think tanks - mostly tend to claim superiority over the others. A frequently used definition of "biometric" is that of a "unique, measurable characteristic or trait of a human being for automatically recognizing or verifying identity" (http://www.icsa.net/services/consortia/cbdc/bg/introduction.shtml); biometrics is the study and application of such measurable characteristics. In IT environments, biometrics are categorised as "security" technologies meant to limit access to information, places and other resources to a specific group of people.

All biometric technologies are made up of the same basic processes:

1. A sample of a biometric is first collected, then transformed into digital information and stored as the "biometric template" of the person in question.

2. At every new identification, a second sample is collected and its identity with the first one is examined.

3. If the two samples are identical, the persons identity is confirmed, i.e. the system knows who the person is.

This means that access to the facility or resource can be granted or denied. It also means that information about the persons behaviour and movements has been collected. The system now knows who passed a certain identification point at which time, at what distance from the previous time, and it can combine these data with others, thereby appropriating an individual's data body.

TEXTBLOCK 22/27 // URL: http://world-information.org/wio/infostructure/100437611729/100438658188
 
Basics: Protected Persons

Generally copyright vests in the author of the work. Certain national laws provide for exceptions and, for example, regard the employer as the original owner of a copyright if the author was, when the work was created, an employee and employed for the purpose of creating that work. In the case of some types of creations, particularly audiovisual works, several national laws provide for different solutions to the question that should be the first holder of copyright in such works.

Many countries allow copyright to be assigned, which means that the owner of the copyright transfers it to another person or entity, which then becomes its holder. When the national law does not permit assignment it usually provides the possibility to license the work to someone else. Then the owner of the copyright remains the holder, but authorizes another person or entity to exercise all or some of his rights subject to possible limitations. Yet in any case the "moral rights" always belong to the author of the work, whoever may be the owner of the copyright (and therefore of the "economic rights").


TEXTBLOCK 23/27 // URL: http://world-information.org/wio/infostructure/100437611725/100438659527
 
Further Tools: Photography

Art has always contributed a lot to disinformation.
Many modern tools for disinformation are used in art/photography.
Harold D. Lasswell once stated that propaganda was cheaper than violence. Today this is no longer true. Technology has created new tools for propaganda and disinformation - and they are expensive. But by now our possibilities to manipulate pictures and stories have gone so far that it can get difficult to tell the difference between the original and a manipulation.

Trillions of photographs have been taken in the 20th century. Too many to look at, too many to control them and their use. A paradise for manipulation.
We have to keep in mind: There is the world, and there exist pictures of the world, which does not mean that both are the same thing. Photographs are not objective, because the photographer selects the part of the world which is becoming a picture. The rest is left out.

Some tools for manipulation of photography are:



Some of those are digital ways of manipulation, which helps to change pictures in many ways without showing the manipulation.

Pictures taken from the internet could be anything and come from anywhere. To proof the source is nearly impossible. Therefore scientists created on watermarks for pictures, which make it impossible to "steal" or manipulate a picture out of the net.

TEXTBLOCK 24/27 // URL: http://world-information.org/wio/infostructure/100437611661/100438658730
 
Biometric applications: surveillance

Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.

Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.

Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.

TEXTBLOCK 25/27 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
 
Transparent customers. Direct marketing online



This process works even better on the Internet because of the latter's interactive nature. "The Internet is a dream to direct marketers", said Wil Lansing, CEO of the American retailer Fingerhut Companies. Many services require you to register online, requiring users to provide as much information about them as possible. And in addition, the Internet is fast, cheap and used by people who tend to be young and on the search for something interesting.

Many web sites also are equipped with user tracking technology that registers a users behaviour and preferences during a visit. For example, user tracking technology is capable of identifying the equipment and software employed by a user, as well as movements on the website, visit of links etc. Normally such information is anonymous, but can be personalised when it is coupled with online registration, or when personal identifcation has been obtained from other sources. Registration is often a prerequisite not just for obtaining a free web mail account, but also for other services, such as personalised start pages. Based on the information provided by user, the start page will then include advertisements and commercial offers that correspond to the users profile, or to the user's activity on the website.

One frequent way of obtaining such personal information of a user is by offering free web mail accounts offered by a great many companies, internet providers and web portals (e.g. Microsoft, Yahoo, Netscape and many others). In most cases, users get "free" accounts in return for submitting personal information and agreeing to receive marketing mails. Free web mail accounts are a simple and effective direct marketing and data capturing strategy which is, however, rarely understood as such. However, the alliances formed between direct advertising and marketing agencies on the one hand, and web mail providers on the other hand, such as the one between DoubleClick and Yahoo, show the common logic of data capturing and direct marketing. The alliance between DoubleClick and Yahoo eventually attracted the US largest direct marketing agency, Abacus Direct, who ended up buying DoubleClick.

However, the intention of collecting users personal data and create consumer profiles based on online behaviour can also take on more creative and playful forms. One such example is sixdegrees.com. This is a networking site based on the assumption that everybody on the planet is connected to everybody else by a chain of six people at most. The site offers users to get to know a lot of new people, the friends of their friends of their friends, for example, and if they try hard enough, eventually Warren Beatty or Claudia Schiffer. But of course, in order to make the whole game more useful for marketing purposes, users are encouraged to join groups which share common interests, which are identical with marketing categories ranging from arts and entertainment to travel and holiday. Evidently, the game becomes more interesting the more new people a user brings into the network. What seems to be fun for the 18 to 24 year old college student customer segment targeted by sixdegrees is, of course, real business. While users entertain themselves they are being carefully profiled. After all, data of young people who can be expected to be relatively affluent one day are worth more than money.

The particular way in which sites such as sixdegrees.com and others are structured mean that not only to users provide initial information about them, but also that this information is constantly updated and therefore becomes even more valuable. Consequently, many free online services or web mail providers cancel a user's account if it has not been uses for some time.

There are also other online services which offer free services in return for personal information which is then used for marketing purposes, e.g. Yahoo's Geocities, where users may maintain their own free websites, Bigfoot, where people are offered a free e-mail address for life, that acts as a relais whenever a customer's residence or e-mail address changes. In this way, of course, the marketers can identify friendship and other social networks, and turn this knowledge into a marketing advantage. People finders such as WhoWhere? operate along similar lines.

A further way of collecting consumer data that has recently become popular is by offering free PCs. Users are provided with a PC for free or for very little money, and in return commit themselves to using certain services rather than others (e.g. a particular internet provider), providing information about themselves, and agree to have their online behaviour monitored by the company providing the PC, so that accurate user profiles can be compiled. For example, the Free PC Network offers advertisers user profiles containing "over 60 individual demographics". There are literally thousands of variations of how a user's data are extracted and commercialised when online. Usually this happens quietly in the background.

A good inside view of the world of direct marketing can be gained at the website of the American Direct Marketing Association and the Federation of European Direct Marketing.

TEXTBLOCK 26/27 // URL: http://world-information.org/wio/infostructure/100437611761/100438659667
 
Private data bunkers

On the other hand are the data bunkers of the private sector, whose position is different. Although these are fast-growing engines of data collection with a much greater degree of dynamism, they may not have the same privileged position - although one has to differentiate among the general historical and social conditions into which a data bunker is embedded. For example, it can safely be assumed that the databases of a large credit card company or bank are more protected than the bureaucracies of small developing countries.

Private data bunkers include

    Banks

    Building societies

    Credit bureaus

    Credit card companies

    Direct marketing companies

    Insurance companies

    Telecom service providers

    Mail order stores

    Online stores


TEXTBLOCK 27/27 // URL: http://world-information.org/wio/infostructure/100437611761/100438659735
 
Chappe's fixed optical network

Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores.

Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best.

Forerunners of Chappe's optical network are the Roman smoke signals network and Aeneas Tacitus' optical communication system.

For more information on early communication networks see Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks.

INDEXCARD, 1/31
 
The Flesh Machine

This is the tile of a book by the Critical Art Ensemble which puts the development of artifical life into a critical historical and political context, defining the power vectors which act as the driving force behind this development. The book is available in a print version (New York, Autonomedia 1998) and in an online version at http://www.critical-art.net/fles/book/index.html

INDEXCARD, 2/31
 
Framing

Framing is the practice of creating a frame or window within a web page where the content of a different web page can be display. Usually when a link is clicked on, the new web page is presented with the reminders of the originating page.

INDEXCARD, 3/31
 
Electronic Data Interchange (EDI)

EDI is an international standard relating to the exchange of trade goods and services. It enables trading partners to conduct routine business transactions, such as purchase orders, invoices and shipping notices independent of the computer platform used by the trading partners. Standardization by EDI translation software assures the correct interpretation of data.

EDI might become increasingly important to electronic commerce.

INDEXCARD, 4/31
 
Apple

Founded by Steve Jobs and Steve Wozniak and headquartered in Cupertino, USA, Apple Computer was the first commercially successful personal computer company.

In 1978 Wozniak invented the first personal computer, the Apple II. IBM countered its successful introduction to the market by introducing a personal computer running MS-DOS, the operating system supplied by Microsoft Corporation. And IBM gained leadership again. Although by introducing the first graphical user interface affordable to consumers having started the desktop publishing revolution, Apple could not regain leadership again.

http://www.apple.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/6/0,5716,115726+1+108787,00.html

http://www.apple.com/
INDEXCARD, 5/31
 
William Frederick Friedman

Friedman is considered the father of U.S.-American cryptoanalysis - he also was the one to start using this term.

INDEXCARD, 6/31
 
water-clocks

The water-clocks are an early long-distance-communication-system. Every communicating party had exactly the same jar, with a same-size-hole that was closed and the same amount of water in it. In the jar was a stick with different messages written on. When one party wanted to tell something to the other it made a fire-sign. When the other answered, both of them opened the hole at the same time. And with the help of another fire-sign closed it again at the same time, too. In the end the water covered the stick until the point of the wanted message.

INDEXCARD, 7/31
 
Agostino Ramelli's reading wheel, 1588

Agostino Ramelli designed a "reading wheel" which allowed browsing through a large number of documents without moving from one spot.

Presenting a large number of books, a small library, laid open on lecterns on a kind of ferry-wheel, allowing us to skip chapters and to browse through pages by turning the wheel to bring lectern after lectern before our eyes, thus linking ideas and texts together, Ramelli's reading wheel reminds of today's browsing software used to navigate the World Wide Web.

INDEXCARD, 8/31
 
Above.net

Headquartered in San Jose, USA, AboveNet Communications is a backbone service provider. Through its extensive peering relationships, the company has built a network with the largest aggregated bandwidth in the world.

http://www.above.net

INDEXCARD, 9/31
 
Microsoft Network

Microsoft Network is the online service from Microsoft Corporation. Although offering direct access to the Internet, mainly proprietary content for entertainment purposes is offered. Best viewed with Microsoft's Internet Explorer.

http://www.msn.com

INDEXCARD, 10/31
 
Harold. D. Lasswell

Harold. D. Lasswell (* 1902) studied at the London School of Economics. He then became a professor of social sciences at different Universities, like the University of Chicago, Columbia University, and Yale University. He also was a consultant for several governments. One of Lasswell's many famous works was Propaganda Technique in World War. In this he defines propaganda. He also discussed major objectives of propaganda, like to mobilize hatred against the enemy, to preserve the friendship of allies, to procure the co-operation of neutrals and to demoralize the enemy.

INDEXCARD, 11/31
 
Instinet

Instinet, a wholly owned subsidiary of Reuters Group plc since 1987, is the world's largest agency brokerage firm and the industry brokerage leader in after hours trading. It trades in over 40 global markets daily and is a member of seventeen exchanges in North America, Europe, and Asia. Its institutional clients represent more than 90 percent of the institutional equity funds under management in the United States. Instinet accounts for about 20 percent of the NASDAQ daily trading volume and trades approximately 170 million shares of all U.S. equities daily.

INDEXCARD, 12/31
 
Blue Box

The blue box-system works with a special blue colored background. The person in front can act as if he/she was filmed anywhere, also in the middle of a war.

INDEXCARD, 13/31
 
Binary number system

In mathematics, the term binary number system refers to a positional numeral system employing 2 as the base and requiring only two different symbols, 0 and 1. The importance of the binary system to information theory and computer technology derives mainly from the compact and reliable manner in which data can be represented in electromechanical devices with two states--such as "on-off," "open-closed," or "go-no go."

INDEXCARD, 14/31
 
Internet Societal Task Force

The Internet Societal Task Force is an organization under the umbrella of the Internet Society dedicated to assure that the Internet is for everyone by identifying and characterizing social and economic issues associated with the growth and use of Internet. It supplements the technical tasks of the Internet Architecture Board, the Internet Engineering Steering Group and the Internet Engineering Task Force.

Topics under discussion are social, economic, regulatory, physical barriers to the use of the Net, privacy, interdependencies of Internet penetration rates and economic conditions, regulation and taxation.

http://www.istf.isoc.org/

http://www.istf.isoc.org/
INDEXCARD, 15/31
 
Colouring

In November 1997, after the assassination of (above all Swiss) tourists in Egypt, the Swiss newspaper Blick showed a picture of the place where the attack had happened, with a tremendous pool of blood, to emphasize the cruelty of the Muslim terrorists. In other newspapers the same picture could be seen - with a pool of water, like in the original. Of course the manipulated coloured version of the Blick fit better into the mind of the shocked Swiss population. The question about death penalty arose quickly ....

INDEXCARD, 16/31
 
Expert system

Expert systems are advanced computer programs that mimic the knowledge and reasoning capabilities of an expert in a particular discipline. Their creators strive to clone the expertise of one or several human specialists to develop a tool that can be used by the layman to solve difficult or ambiguous problems. Expert systems differ from conventional computer programs as they combine facts with rules that state relations between the facts to achieve a crude form of reasoning analogous to artificial intelligence. The three main elements of expert systems are: (1) an interface which allows interaction between the system and the user, (2) a database (also called the knowledge base) which consists of axioms and rules, and (3) the inference engine, a computer program that executes the inference-making process. The disadvantage of rule-based expert systems is that they cannot handle unanticipated events, as every condition that may be encountered must be described by a rule. They also remain limited to narrow problem domains such as troubleshooting malfunctioning equipment or medical image interpretation, but still have the advantage of being much lower in costs compared with paying an expert or a team of specialists.

INDEXCARD, 17/31
 
retouch

The retouch is the simplest way to change a picture. Small corrections can be made through this way.
A well-known example is the correction of a picture from a Bill Clinton-visit in Germany. In the background of the photograph stood some people, holding a sign with critical comments. In some newspapers the picture was printed like this, in others a retouch had erased the sign.
Another example happened in Austria in 1999:
The right wing party FPÖ had a poster for the Parliamentarian elections which said: 1999 reasons to vote for Haider. Others answered by producing a retouch saying: 1938 reasons to not vote for Haider (pointing to the year 1939, when the vast majority of the Austrians voted for the "Anschluss" to Germany).

INDEXCARD, 18/31
 
Defense Advanced Research Project Agency (DARPA)

DARPA (Defense Advanced Research Projects Agency) is the independent research branch of the U.S. Department of Defense that, among its other accomplishments, funded a project that in time was to lead to the creation of the Internet. Originally called ARPA (the "D" was added to its name later), DARPA came into being in 1958 as a reaction to the success of Sputnik, Russia's first manned satellite. DARPA's explicit mission was (and still is) to think independently of the rest of the military and to respond quickly and innovatively to national defense challenges.

In the late 1960s, DARPA provided funds and oversight for a project aimed at interconnecting computers at four university research sites. By 1972, this initial network, now called the ARPAnet, had grown to 37 computers. ARPANet and the technologies that went into it, including the evolving Internet Protocol (IP) and the Transmission Control Protocol (TCP), led to the Internet that we know today.

http://www.darpa.mil

INDEXCARD, 19/31
 
The World Wide Web History Project

The ongoing World Wide Web History Project was established to record and publish the history of the World Wide Web and its roots in hypermedia and networking. As primary research methods are used archival research and the analysis of interviews and talks with pioneers of the World Wide Web. As result a vast of collection of historic video, audio, documents, and software is expected. The project's digital archive is currently under development.

http://www.webhistory.org/home.html

INDEXCARD, 20/31
 
Internet Exchanges

Internet exchanges are intersecting points between major networks.

List of the World's Public Internet exchanges (http://www.ep.net)

http://www.ep.net/
INDEXCARD, 21/31
 
Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks

This book gives a fascinating glimpse of the many documented attempts throughout history to develop effective means for long distance communications. Large-scale communication networks are not a twentieth-century phenomenon. The oldest attempts date back to millennia before Christ and include ingenious uses of homing pigeons, mirrors, flags, torches, and beacons. The first true nationwide data networks, however, were being built almost two hundred years ago. At the turn of the 18th century, well before the electromagnetic telegraph was invented, many countries in Europe already had fully operational data communications systems with altogether close to one thousand network stations. The book shows how the so-called information revolution started in 1794, with the design and construction of the first true telegraph network in France, Chappe's fixed optical network.

http://www.it.kth.se/docs/early_net/

INDEXCARD, 22/31
 
PGP

A cryptographic software application that was developed by Phil Zimmerman at the Massachusetts Institute of Technology. Pretty Good Privacy (PGP) is a cryptographic product family that enables people to securely exchange messages, and to secure files, disk volumes and network connections with both privacy and strong authentication.

INDEXCARD, 23/31
 
Internet Society

Founded in 1992, the Internet Society is an umbrella organization of several mostly self-organized organizations dedicated to address the social, political, and technical issues, which arise as a result of the evolution and the growth of the Net. Its most important subsidiary organizations are the Internet Architecture Board, the Internet Engineering Steering Group, the Internet Engineering Task Force, the Internet Research Task Force, and the Internet Societal Task Force.

Its members comprise companies, government agencies, foundations, corporations and individuals. The Internet Society is governed by elected trustees.

http://www.isoc.org

http://www.isoc.org/
INDEXCARD, 24/31
 
Bill Clinton

William J. Clinton (* 1946) studied law at Yale University, then taught at the University of Arkansas. He was elected Arkansas attorney general in 1976 and served as a governor until 1992. That year he became U.S.-President, the first democratic President after a row of Republicans. His sexual affairs not only cost him nearly his career but he also had to distract from his private affairs: he thought of fighting another war against Saddam Hussein in February 1999. Short afterwards he had a more interesting enemy, Slobodan Milosevic - and the NATO was most willing to fight with him.

For more information see: http://www.whitehouse.gov/WH/glimpse/presidents/html/bc42.html

http://www.whitehouse.gov/WH/glimpse/presiden...
INDEXCARD, 25/31
 
Philip M. Taylor

Munitions of the Mind. A history of propaganda from the ancient world to the present era. Manchester 1995 (2nd ed.)
This book gives a quite detailed insight on the tools and tasks of propaganda in European and /or Western history. Starting with ancient times the author goes up till the Gulf War and the meaning of propaganda today. In all those different eras propaganda was transporting similar messages, even when technical possibilities had not been fairly as widespread as today. Taylor's book is leading the reader through those different periods, trying to show the typical elements of each one.

INDEXCARD, 26/31
 
Disney

American corporation that became the best-known purveyor of child and adult entertainment in the 20th century. Its headquarters are in Burbank, Calif. The company was founded in 1929 and produced animated motion-picture cartoons.
In 1955 the company opened the Disneyland amusement park, one of the world's most famous. Under a new management, in the 1980s, Disney's motion-picture and animated-film production units became among the most successful in the United States. In 1996 the Disney corporation acquired Capital Cities/ABC Inc., which owned the ABC television network. The Disney Company also operates the Disney Channel, a pay television programming service.

INDEXCARD, 27/31
 
Cooperative Association of Internet Data Analysis (CAIDA)

Based at the University of California's San Diego Supercomputer Center, CAIDA supports cooperative efforts among the commercial, government and research communities aimed at promoting a scalable, robust Internet infrastructure. It is sponsored by the Defense Advanced Research Project Agency (DARPA) through its Next Generation Internet program, by the National Science Foundation, Cisco, Inc., and Above.net.

INDEXCARD, 28/31
 
Whitfield Diffie

Whitfield Diffie is an Engineer at Sun Microsystems and co-author of Privacy on the Line (MIT Press) in 1998 with Susan Landau. In 1976 Diffie and Martin Hellman developed public key cryptography, a system to send information without leaving it open to be read by everyone.

INDEXCARD, 29/31
 
COMECON

The Council for Mutual Economic Aid (COMECON) was set up in 1949 consisting of six East European countries: Bulgaria, Czechoslovakia, Hungary, Poland, Romania, and the USSR, followed later by the German Democratic Republic (1950), Mongolia (1962), Cuba (1972), and Vietnam (1978). Its aim was, to develop the member countries' economies on a complementary basis for the purpose of achieving self-sufficiency. In 1991, Comecon was replaced by the Organization for International Economic Cooperation.

INDEXCARD, 30/31
 
Cutting

The cutting of pictures in movies or photographs is highly manipulative: it is easy to produce a new video out of an already existing one. The result is a form of manipulation that is difficult to contradict. A reputation destroyed by this, is nearly impossible to heal.

INDEXCARD, 31/31