|
Virtual body and data body The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world. But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question. |
|
|
|
Fiber-optic cable networks Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Copper wires will not come out of use in the foreseeable future because of technologies as For technical information from the Encyclopaedia Britannica on telecommunication cables, click An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the For maps of fiber-optic cable networks see the website of |
|
|
|
Internet Society Founded in 1992, the Internet Society is an umbrella organization of several mostly self-organized organizations dedicated to address the social, political, and technical issues, which arise as a result of the evolution and the growth of the Net. Its most important subsidiary organizations are the Its members comprise companies, government agencies, foundations, corporations and individuals. The Internet Society is governed by elected trustees. |
|
|