Global Data Flows

Fiber-optic cables, coaxial cables, copper wires, electric power lines, microwaves, satellite communication, mobile telephony, computer networks: Various telecommunication networks following a variety of standards with bewildering abbreviations - DSL, WAP, GSM, UMTS, Ipv4 etc. - and carrying endless flows of capital and information are the blood veins of modern societies.

In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy.

Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries.

This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611791/100438658776
 
Biometrics applications: gate keeping

Identity has to do with "place". In less mobile societies, the place where a person finds him/herself tells us something about his/her identity. In pre-industrial times, gatekeepers had the function to control access of people to particular places, i.e. the gatekeepers function was to identify people and then decide whether somebody's identity would allow that person to physically occupy another place - a town, a building, a vehicle, etc.

In modern societies, the unambiguous nature of place has been weakened. There is a great amount of physical mobility, and ever since the emergence and spread of electronic communication technologies there has been a "virtualisation" of places in what today we call "virtual space" (unlike place, space has been a virtual reality from the beginning, a mathematical formula) The question as to who one is no longer coupled to the physical abode. Highly mobile and virtualised social contexts require a new generation of gatekeepers which biometric technology aims to provide.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611729/100438658757
 
Late 1950s - Early 1960s: Second Generation Computers

An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.

Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.

Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
 
Online data capturing

Hardly a firm today can afford not to engage in electronic commerce if it does not want to be swept out of business by competitors. "Information is everything" has become something like the Lord's prayer of the New Economy. But how do you get information about your customer online? Who are the people who visit a website, where do they come from, what are they looking for? How much money do they have, what might they want to buy? These are key questions for a company doing electronic business. Obviously not all of this information can be obtained by monitoring the online behaviour of web users, but there are always little gimmicks that, when combined with common tracking technologies, can help to get more detailed information about a potential customer. These are usually online registration forms, either required for entry to a site, or competitions, sometimes a combination of the two. Obviously, if you want to win that weekend trip to New York, you want to provide your contact details.

The most common way of obtaining information about a user online is a cookie. However, a cookie by itself is not sufficient to identify a user personally. It merely identifies the computer to the server by providing its IP number. Only combined with other data extraction techniques, such as online registration, can a user be identified personally ("Register now to get the full benefit of xy.com. It's free!")

But cookies record enough information to fine-tune advertising strategies according to a user's preferences and interests, e.g. by displaying certain commercial banners rather than others. For example, if a user is found to respond to a banner of a particular kind, he / she may find two of them at the next visit. Customizing the offers on a website to the particular user is part of one-to-one marketing, a type of direct marketing. But one-to-one marketing can go further than this. It can also offer different prices to different users. This was done by Amazon.com in September 2000, when fist-time visitors were offered cheaper prices than regular customers.

One-to-one marketing can create very different realities that undermine traditional concepts of demand and supply. The ideal is a "frictionless market", where the differential between demand and supply is progressively eliminated. If a market is considered a structure within which demand / supply differentials are negotiated, this amounts to the abolition of the established notion of the nature of a market. Demand and supply converge, desire and it fulfilment coincide. In the end, there is profit without labour. However, such a structure is a hermetic structure of unfreedom.

It can only function when payment is substituted by credit, and the exploitation of work power by the exploitation of data. In fact, in modern economies there is great pressure to increase spending on credit. Using credit cards and taking up loans generates a lot of data around a person's economic behaviour, while at the same restricting the scope of social activity and increasing dependence. On the global level, the consequences of credit spirals can be observed in many of the developing countries that have had to abandon most of their political autonomy. As the data body economy advances, this is also the fate of people in western societies when they are structurally driven into credit spending. It shows that data bodies are not politically neutral.

The interrelation between data, profit and unfreedom is frequently overlooked by citizens and customers. Any company in a modern economy will apply data collecting strategies for profit, with dependence and unfreedom as a "secondary effect". The hunger for data has made IT companies eager to profit from e-business rather resourceful. "Getting to know the customer" - this is a catchphrase that is heard frequently, and which suggests that there are no limits to what a company may want to about a customer. In large online shops, such as amazon.com, where customer's identity is accurately established by the practice of paying with credit cards, an all business happens online, making it easy for the company to accurately profile the customers.

But there are more advanced and effective ways of identification. The German company Sevenval has developed a new way of customer tracking which works with "virtual domains". Every visitor of a website is assigned an 33-digit identification number which the browser understands as part of the www address, which will then read something like http://XCF49BEB7E97C00A328BF562BAAC75FB2.sevenval.com. Therefore, this tracking method, which is advertised by Sevenval as a revolutionary method capable of tracking the exact and complete path of a user on a website, can not be simple switched off. In addition, the method makes it possible for the identity of a user can travel with him when he / she visits one of the other companies linked to the site in question. As in the case of cookies, this tracking method by itself is not sufficient to identify a user personally. Such an identification only occurs once a customer pays with a credit card, or decides to participate in a draw, or voluntarily completes a registration form.

Bu there are much less friendly ways of extracting data from a user and feeding the data body. Less friendly means: these methods monitor users in situations where the latter are likely not to want to be monitored. Monitoring therefore takes place in a concealed manner. One of these monitoring methods are so-called web bugs. These are tiny graphics, not more than 1 x 1 pixel in size, and therefore invisible on a screen, capable of monitoring an unsuspecting user's e-mails or movements on a website. Leading corporations such as Barnes and Noble, eToys, Cooking.com, and Microsoft have all used web bugs in advertising campaigns. Richard Smith has compiled a web bugs FAQ site that contains detailed information and examples of web bugs in use.

Bugs monitoring users have also been packaged in seemingly harmless toys made available on the Internet. For example, Comet Systems offers cursor images which have been shown to collect user data and send them back to the company's server. These little images replace the customary white arrow of a mouse with a little image of a baseball, a cat, an UFO, etc. large enough to carry a bug collecting user information. The technology is offered as a marketing tool to companies looking for a "fun, new way to interact with their audience".

The cursor image technology relies on what is called a GUID (global unique identifier). This is an identification number which is assigned to a customer at the time of registration, or when downloading a product. Many among the online community were alarmed when in 1999 it was discovered that Microsoft assigned GUIDS without their customer's knowledge. Following protests, the company was forced to change the registration procedure, assuring that under no circumstances would these identification numbers be used for tracking or marketing.

However, in the meantime, another possible infringement on user anonymity by Microsoft was discovered, when it as found out that MS Office documents, such as Word, Excel or Powerpoint, contain a bug that is capable of tracking the documents as they are sent through the net. The bug sends information about the user who opens the document back to the originating server. A document that contains the bug can be tracked across the globe, through thousands of stopovers. In detailed description of the bug and how it works can be found at the Privacy Foundation's website. Also, there is an example of such a bug at the Privacy Center of the University of Denver.

Of course there are many other ways of collecting users' data and creating appropriating data bodies which can then be used for economic purposes. Indeed, as Bill Gates commented, "information is the lifeblood of business". The electronic information networks are becoming the new frontier of capitalism.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611761/100438659686
 
Microsoft Corporation

Founded by Bill Gates and Paul Allen and headquartered in Redmond, USA, Microsoft Corporation is today's world-leading developer of personal-computer software systems and applications. As MS-DOS, the first operating system released by Microsoft, before, Windows, its successor, has become the de-facto standard operating system for personal computer. According to critics and following a recent court ruling this is due to unfair competition.

http://www.microsoft.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/4/0,5716,1524+1+1522,00.html

http://www.microsoft.com/
http://www.britannica.com/bcom/eb/article/4/0...
INDEXCARD, 1/4
 
New World Order

http://www.douzzer.ai.mit.edu:8080/conspiracy...
http://www.geocities.com/CapitolHill/Lobby/18...
INDEXCARD, 2/4
 
Nero

Nero's full name was Nero Claudius Caesar Augustus Germanicus (37-68 AD). Nero was Roman Emperor from 54-68 AD; during the first years in power he stood under the influence of his teacher Seneca. In this period he was very successful in inner politics and abroad, for example in Britannia. Soon he changed into a selfish dictator, had his brother, mother and wife killed and probably burnt Rome, blaming the Christians for it. More than in political affairs he was interested in arts. when he was dismissed in 68, he committed suicide.

INDEXCARD, 3/4
 
Bulletin Board Systems

A BBS (bulletin board system) is a computer that can be reached by computer modem dialing (you need to know the phone number) or, in some cases, by Telnet for the purpose of sharing or exchanging messages or other files. Some BBSs are devoted to specific interests; others offer a more general service. The definitive BBS List says that there are 40,000 BBSs worldwide.

Bulletin board systems originated and generally operate independently of the Internet.

Source: Whatis.com

INDEXCARD, 4/4