|
Biometrics applications: physical access This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel. Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at A gate keeping system for airports relying on digital fingerprint and hand geometry is described at An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles". However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the |
|
|
|
Biometrics applications: gate keeping Identity has to do with "place". In less mobile societies, the place where a person finds him/herself tells us something about his/her identity. In pre-industrial times, gatekeepers had the function to control access of people to particular places, i.e. the gatekeepers function was to identify people and then decide whether somebody's identity would allow that person to physically occupy another place - a town, a building, a vehicle, etc. In modern societies, the unambiguous nature of place has been weakened. There is a great amount of physical mobility, and ever since the emergence and spread of electronic communication technologies there has been a "virtualisation" of places in what today we call "virtual space" (unlike place, space has been a virtual reality from the beginning, a mathematical formula) The question as to who one is no longer coupled to the physical abode. Highly mobile and virtualised social contexts require a new generation of gatekeepers which biometric technology aims to provide. |
|
|
|
In Search of Reliable Internet Measurement Data Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible. Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Size and Growth In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known So his statement is a slap in the face of all market researchers stating otherwise. In a certain sense this is ridiculous, because since the inception of the So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the "There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Hosts The Despite the small sample, this method has at least one flaw: Internet Weather Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet Hits, Page Views, Visits, and Users Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed. For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate. In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle. But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and For If you like to play around with Internet statistics instead, you can use Robert Orenstein's Measuring the Density of Measuring the Density of Dodge and Shiode used data on the ownership of IP addresses from |
|
|
|
Global data bodies - intro - Education files, insurance files, tax files, communication files, consumption files, medical files, travel files, criminal files, investment files, files into infinity ... Critical Art Ensemble Global data bodies 1. Introduction Informatisation has meant that things that once were "real", i.e. whose existence could be experienced sensually, are becoming virtual. Instead of the real existence of a thing, the virtual refers to its possibility of existence. As this process advances, an increasing identification of the possible with the real occurs. Reality migrates into a dim and dematerialised grey area. In the end, the possible counts for the real, virtualisation creates an "as-if" experience. The experience of the body is also affected by this process. For example, in bio-technology, the human body and its functions are digitised, which prepares and understanding of the body exlusively in terms of its potential manipulation, the body becomes whatever it could be. But digitisation has not only affected the understanding and the social significance of the body, it has also altered the meaning of presence, traditionally identified with the body. The advance of information and communication technologies (ICTs) has meant that for an increasing number of activities we no longer need be physically present, our "virtual" presence, achieved by logging onto a electronic information network, is sufficient. This development, trumpeted as the pinnacle of convenience by the ICT industries and governments interested in attracting investment, has deeply problematic aspects as well. For example, when it is no longer "necessary" to be physically present, it may soon no longer be possible or allowed. Online-banking, offered to customers as a convenience, is also serves as a justification for charging higher fees from those unwilling or unable to add banking to their household chores. Online public administration may be expected to lead to similar effects. The reason for this is that the digitalisation of the economy relies on the production of surplus data. Data has become the most important raw material of modern economies. In modern economies, informatisation and virtualisation mean that people are structurally forced to carry out their business and life their lives in such a way as to generate data. Data are the most important resource for the New Economy. By contrast, activities which do not leave behind a trace of data, as for example growing your own carrots or paying cash rather than by plastic card, are discouraged and structurally suppressed. |
|
|
|
Caching Caching generally refers to the process of making an extra copy of a file or a set of files for more convenient retrieval. On the Internet caching of third party files can occur either locally on the user's client computer (in the RAM or on the hard drive) or at the server level ("proxy caching"). A requested file that has been cached will then be delivered from the cache rather than a fresh copy being retrieved over the Internet. |
|
|
|
IBM IBM (International Business Machines Corporation) manufactures and develops cumputer hardware equipment, application and sysem software, and related equipment. IBM produced the first PC (Personal Computer), and its decision to make Microsoft DOS the standard operating system initiated Microsoft's rise to global dominance in PC software. Business indicators: 1999 Sales: $ 86,548 (+ 7,2 % from 1998) Market capitalization: $ 181 bn Employees: approx. 291,000 Corporate website: |
|
|
|
Computer programming language A computer programming language is any of various languages for expressing a set of detailed instructions for a digital computer. Such a language consists of characters and rules for combining them into symbols and words. |
|
|
|
R.J. Reynolds American manufacturer of tobacco products. The origins of the R.J. Reynolds Tobacco Company date to the post-Civil War era, when Richard Joshua Reynolds (1850-1918) began trading in tobacco, first in his native Virginia and then in Winston, N.C., where in 1875 he established his first plug factory. The company began to diversify in the 1960s, acquiring chiefly food and oil concerns, and the tobacco concern became a subsidiary of R.J. Reynolds Industries, Inc., in 1970. |
|
|
|
DES The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys. for more information see: |
|
|