|
Another Question of Security Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day. Therefore the decision to elect a certain method of enciphering finally is a matter of trust. For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide. The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge. The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy. It is especially the latter that touches the main elements of democracy. for the question of security see: |
|
|
|
Biometrics applications: privacy issues All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy. Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control. While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology. The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks. |
|
|
|
Intellectual Property and the "Information Society" Metaphor Today the talk about the so-called "information society" is ubiquitous. By many it is considered as the successor of the industrial society and said to represent a new form of societal and economical organization. This claim is based on the argument, that the information society uses a new kind of resource, which fundamentally differentiates from that of its industrial counterpart. Whereas industrial societies focus on physical objects, the information society's raw material is said to be knowledge and information. Yet the conception of the capitalist system, which underlies industrial societies, also continues to exist in an information-based environment. Although there have been changes in the forms of manufacture, the relations of production remain organized on the same basis. The principle of property. In the context of a capitalist system based on industrial production the term property predominantly relates to material goods. Still even as in an information society the raw materials, resources and products change, the concept of property persists. It merely is extended and does no longer solely consider physical objects as property, but also attempts to put information into a set of property relations. This new kind of knowledge-based property is widely referred to as " |
|
|
|
Identificaiton in history In biometric technology, the subject is reduced to its physical and therefore inseparable properties. The subject is a subject in so far as it is objectified; that is, in so far as is identified with its own res extensa, Descartes' "extended thing". The subject exists in so far as it can be objectified, if it resists the objectification that comes with measurement, it is rejected or punished. Biometrics therefore provides the ultimate tool for control; in it, the dream of hermetic identity control seems to become a reality, a modern technological reconstruction of traditional identification techniques such as the handshake or the look into somebody's eyes. The use of identification by states and other institutions of authority is evidently not simply a modern phenomenon. The ancient Babylonians and Chinese already made use of finger printing on clay to identify authors of documents, while the Romans already systematically compared handwritings. Body measurement has long been used by the military. One of the first measures after entering the military is the identification and appropriation of the body measurements of a soldier. These measurements are filed and combined with other data and make up what today we would call the soldier's data body. With his data body being in possession of the authority, a soldier is no longer able freely socialise and is instead dependent on the disciplinary structure of the military institution. The soldier's social being in the world is defined by the military institution. However, the military and civilian spheres of modern societies are no longer distinct entities. The very ambivalence of advanced technology (dual use technologies) has meant that "good" and "bad" uses of technology can no longer be clearly distinguished. The measurement of physical properties and the creation of data bodies in therefore no longer a military prerogative, it has become diffused into all areas of modern societies. If the emancipatory potential of weak identities is to be of use, it is therefore necessary to know how biometric technologies work and what uses they are put to. |
|
|
|
Timeline 1600 - 1900 AD 17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card - Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians - the English scientist, magician and astrologer 1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally. 1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code 18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day. 1790's Thomas Jefferson and Robert Patterson invent a wheel cipher 1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs 1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844. 1834 the 1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then 1854 the Playfair cipher is invented by Sir Charles Wheatstone 1859 for the first time a tomographic cipher gets described 1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages 1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army 1895 the invention of the radio changes cryptography-tasks again and makes them even more important |
|
|
|
Feeding the data body |
|
|
|
Viacom One of the largest and foremost communications and media conglomerates in the world. Founded in 1971, the present form of the corporation dates from 1994 when Viacom Inc., which owned radio and television stations and cable television programming services and systems, acquired the entertainment and publishing giant Paramount Communications Inc. and then merged with the video and music retailer Blockbuster Entertainment Corp. Headquarters are in New York City. |
|
|
|
Cisco, Inc. Being the worldwide leader in networking for the Internet, Cisco Systems is one of the most prominent companies of the Internet industry. http://www.cisco.com |
|
|
|
Aeneas Tacticus Supposedly his real name was Aeneas of Stymphalus. He was a Greek military scientist and cryptographer. He invented an optical system for communication similar to a telegraph: the |
|
|
|
Bandwidth The bandwidth of a transmitted communications signal is a measure of the range of frequencies the signal occupies. The term is also used in reference to the frequency-response characteristics of a communications receiving system. All transmitted signals, whether analog or digital, have a certain bandwidth. The same is true of receiving systems. Generally speaking, bandwidth is directly proportional to the amount of data transmitted or received per unit time. In a qualitative sense, bandwidth is proportional to the complexity of the data for a given level of system performance. For example, it takes more bandwidth to download a photograph in one second than it takes to download a page of text in one second. Large sound files, computer programs, and animated videos require still more bandwidth for acceptable system performance. Virtual reality (VR) and full-length three-dimensional audio/visual presentations require the most bandwidth of all. In digital systems, bandwidth is data speed in bits per second (bps). Source: Whatis.com |
|
|
|
Kessler Marketing Intelligence (KMI) KMI is the leading source for information on fiber-optics markets. It offers market research, strategic analysis and product planning services to the opto-electronics and communications industries. KMI tracks the worldwide fiber-optic cable system and sells the findings to the industry. KMI says that every fiber-optics corporation with a need for strategic market planning is a subscriber to their services. |
|
|
|
Internet Engineering Steering Group On behalf of the |
|
|
|
François Duvalier b. April 14, 1907, Port-au-Prince, Haiti d. April 21, 1971, Port-au-Prince By name PAPA DOC, president of Haiti whose 14-year regime was of unprecedented duration in that country. A supporter of President Dumarsais Estimé, Duvalier was appointed director general of the National Public Health Service in 1946. He was appointed underminister of labour in 1948 and the following year became minister of public health and labour, a post that he retained until May 10, 1950, when President Estimé was overthrown by a military junta under Paul E. Magloire, who was subsequently elected president. By 1954 he had become the central opposition figure and went underground. Duvalier was elected president in September 1957. Setting about to consolidate his power, he reduced the size of the army and organized the Tontons Macoutes ("Bogeymen"), a private force responsible for terrorizing and assassinating alleged foes of the regime. Late in 1963 Duvalier moved further toward an absolutist regime, promoting a cult of his person as the semi divine embodiment of the Haitian nation. In April 1964 he was declared president for life. Although diplomatically almost completely isolated, excommunicated by the Vatican until 1966 for harassing the clergy, and threatened by conspiracies against him, Duvalier was able to stay in power longer than any of his predecessors. |
|
|