Definition

During the last 20 years the old Immanuel Wallerstein-paradigm of center - periphery and semi-periphery found a new costume: ICTs. After Colonialism, Neo-Colonialism and Neoliberalism a new method of marginalization is emerging: the digital divide.

"Digital divide" describes the fact that the world can be divided into people who
do and people who do not have access to (or the education to handle with) modern information technologies, e.g. cellular telephone, television, Internet. This digital divide is concerning people all over the world, but as usually most of all people in the formerly so called third world countries and in rural areas suffer; the poor and less-educated suffer from that divide.
More than 80% of all computers with access to the Internet are situated in larger cities.

"The cost of the information today consists not so much of the creation of content, which should be the real value, but of the storage and efficient delivery of information, that is in essence the cost of paper, printing, transporting, warehousing and other physical distribution means, plus the cost of the personnel manpower needed to run these `extra' services ....Realizing an autonomous distributed networked society, which is the real essence of the Internet, will be the most critical issue for the success of the information and communication revolution of the coming century of millennium."
(Izumi Aizi)

for more information see:
http://www.whatis.com/digital_divide.htm

TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611730/100438659300
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
Steganography

Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms.
Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee).
In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son.

for further details see:
http://home.att.net/~tleary/
http://www.thur.de/ulf/stegano/
http://www2.prestel.co.uk/littleton/gm2_rw.htm

One kind of steganogram is digital watermarking:
Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too.

Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe.
But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development.

for further information see:
http://www.isse.gmu.edu/~njohnson/Steganography

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438659021
 
B2-92

B2-92 is an independent FM radio station based in Belgrade, which has won a number of international press and media awards. Their broadcasts and music and uncensored news heard across Serbia through a network of local partner stations. Their signal was also picked up by the BBC World Service and retransmitted via satellite around the world. In December 1996, B2-92 began using technology to stream live audio broadcasts and short video clips over the Internet.

Strategies and Policies

From its start as a terrestrial broadcaster B2-92 has been a respected source of independent news in the Balkans. Although B2-92 has been constantly subjected to repression and threat by government authorities it continued to provide music and news. When in December 1996 B2-92 was banned from broadcasting it began to distribute its content via streaming audio and video on its website. A web savvy support group was formed helping B2-92 to continue its distribution of news. Anonymous e-mail lists were developed to protect the identity of those wishing to express their views about the war, as well as a message boards linking to the Help B2-92 Campaign site. Furthermore encrypted e-mail services were provided for journalists and others in the former Yugoslavia who found themselves under threat. B2-92 also co-operates with various media activists and support groups and networks, which help B2-92 to continue its content distribution.

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611734/100438659212
 
The Concept of the Public Sphere

According to social critic and philosopher Jürgen Habermas "public sphere" first of all means "... a domain of our social life in which such a thing as public opinion can be formed. Access to the public sphere is open in principle to all citizens. A portion of the public sphere is constituted in every conversation in which private persons come together to form a public. They are then acting neither as business or professional people conducting their private affairs, nor as legal consociates subject to the legal regulations of a state bureaucracy and obligated to obedience. Citizens act as a public when they deal with matters of general interest without being subject to coercion; thus with the guarantee that they may assemble and unite freely, and express and publicize their opinions freely."

The system of the public sphere is extremely complex, consisting of spatial and communicational publics of different sizes, which can overlap, exclude and cover, but also mutually influence each other. Public sphere is not something that just happens, but also produced through social norms and rules, and channeled via the construction of spaces and the media. In the ideal situation the public sphere is transparent and accessible for all citizens, issues and opinions. For democratic societies the public sphere constitutes an extremely important element within the process of public opinion formation.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611734/100438658403
 
Pressures and Attacks against Independent Content Providers: Serbia

The independent Belgrade based FM radio-station B2-92, which from December 1996 on also broadcasts over the Internet, repeatedly has been the target of suppression and attacks by the Serbian government.

B2-92 offices have been raided on numerous occasions and members of staff have been repeatedly harassed or arrested. In March 1999 the transmitter of radio B2-92 was confiscated yet again by the Serbian authorities and editor-in-chief, Veran Matic, was taken and held in custody at a police station. Ten days after the confiscation of B2-92's transmitter, Serbian police entered and sealed their offices. All members of staff were sent home and a new General Manager was appointed by Serbian officials. Although by closing B2-92, the Serbian regime may have succeeded in softening the voice of the independent content provider, with the distributive nature of the Internet and the international help of media activists, the regime will have little chance of silencing the entire flood of independent content coming out of former Yugoslavia.

TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611734/100438659225
 
Bulletin Board Systems

A BBS (bulletin board system) is a computer that can be reached by computer modem dialing (you need to know the phone number) or, in some cases, by Telnet for the purpose of sharing or exchanging messages or other files. Some BBSs are devoted to specific interests; others offer a more general service. The definitive BBS List says that there are 40,000 BBSs worldwide.

Bulletin board systems originated and generally operate independently of the Internet.

Source: Whatis.com

INDEXCARD, 1/6
 
Human Genome Project

The Human Genome Project is an international colaborative research project that aims to map the human genome. It's goal is to idenitfy the 100,000 genes of the human DNA as well as to sequence the 3 billion chemical base pairs that make up the DNA. The HGP is designed on an open source basis, i.e. the information that is obtained and stored in databases should, in principle, be available to researchers and businesses all over the world. However, the HGP's work has been challenged by private businesses such as Celera whose objective is the private exploitation of genome information.

INDEXCARD, 2/6
 
ciphers

the word "cipher" comes from the Hebrew word "saphar", meaning "to number". Ciphers are mere substitutions. Each letter of the alphabet gets substituted; maybe by one letter or two or more.

an example:
PLAINTEXT a b c d e f g h i j k l m n o p q r s t u v w x y z
CIPHERTEXT D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

INDEXCARD, 3/6
 
Virtual Marylin Monroe

This is the story of the virtual Marylyn Monroe created by MRALab in Switzerland. The biography features her personal and professional stories. This being the biography of a virtual being, it does not end with the present and includes, instead, a chapter on her destiny.

http://www.miralab.unige.ch/MARILYN/VIRTUAL/virtual.html

http://www.miralab.unige.ch/MARILYN/VIRTUAL/v...
INDEXCARD, 4/6
 
Fiber-optic cable networks

Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the World Wide Web.

Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Alexander Graham Bell might have not envisioned when he transmitted the first words - "Mr. Watson, come here. I want you" - over a copper wire.

Copper wires will not come out of use in the foreseeable future because of technologies as DSL that speed up access drastically. But with the technology to transmit signals at more than one wavelength on fiber-optic cables, there bandwidth is increasing, too.

For technical information from the Encyclopaedia Britannica on telecommunication cables, click here. For technical information from the Encyclopaedia Britannica focusing on fiber-optic cables, click here.

An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click here for reading.

Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click here for reading.

A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the International Cable Protection Committee.

For maps of fiber-optic cable networks see the website of Kessler Marketing Intelligence, Inc.

http://www.britannica.com/bcom/eb/article/4/0...
http://www.britannica.com/bcom/eb/article/4/0...
http://www.wired.com/wired/archive/4.12/ffgla...
http://www.pretext.com/mar98/features/story3....
INDEXCARD, 5/6
 
Defense Advanced Research Project Agency (DARPA)

DARPA (Defense Advanced Research Projects Agency) is the independent research branch of the U.S. Department of Defense that, among its other accomplishments, funded a project that in time was to lead to the creation of the Internet. Originally called ARPA (the "D" was added to its name later), DARPA came into being in 1958 as a reaction to the success of Sputnik, Russia's first manned satellite. DARPA's explicit mission was (and still is) to think independently of the rest of the military and to respond quickly and innovatively to national defense challenges.

In the late 1960s, DARPA provided funds and oversight for a project aimed at interconnecting computers at four university research sites. By 1972, this initial network, now called the ARPAnet, had grown to 37 computers. ARPANet and the technologies that went into it, including the evolving Internet Protocol (IP) and the Transmission Control Protocol (TCP), led to the Internet that we know today.

http://www.darpa.mil

INDEXCARD, 6/6