"Stealth Sites"

"Stealth sites" account for a particular form of hidden advertisement. Stealth sites look like magazines, nicely designed and featuring articles on different topics, but in reality are set up for the sole purpose of featuring a certain companies products and services. "About Wines" for example is a well-done online magazine, featuring articles on food and travel and also publishes articles on wine, which surprisingly all happen to be from Seagram.

TEXTBLOCK 1/11 // URL: http://world-information.org/wio/infostructure/100437611652/100438657995
 
1800 - 1900 A.D.

1801
Invention of the punch card

Invented by Joseph Marie Jacquard, an engineer and architect in Lyon, France, punch cards laid the ground for automatic information processing. For the first time information was stored in binary format on perforated cardboard cards. In 1890 Hermann Hollerith used Joseph-Marie Jacquard's punch card technology to process statistical data collected during the US census in 1890, thus speeding up US census data analysis from eight to three years. Hollerith's application of Jacquard's invention was used for programming computers and data processing until electronic data processing was introduced in the 1960's. - As with writing and calculating, administrative applications account for the beginning of modern automatic data processing.

Paper tapes are a medium similar to Jacquard's punch cards. In 1857 Sir Charles Wheatstone used them for the preparation, storage, and transmission of data for the first time. Through paper tapes telegraph messages could be stored, prepared off-line and sent ten times quicker (up to 400 words per minute). Later similar paper tapes were used for programming computers.

1809
Invention of the electrical telegraph

With Samuel Thomas Soemmering's invention of the electrical telegraph the telegraphic transmission of messages was no longer tied to visibility, as it was the case with smoke and light signals networks. Economical and reliable, the electric telegraph became the state-of-the-art communication system for fast data transmissions, even over long distances.

Click here for an image of Soemmering's electric telegraph.

1861
Invention of the telephone

The telephone was not invented by Alexander Graham Bell, as is widely held, but by Philipp Reiss, a German teacher. When he demonstrated his invention to important German professors in 1861, it was not enthusiastically greeted. Because of this dismissal, he was not given any financial support for further development.

And here Bell comes in: In 1876 he successfully filed a patent for the telephone. Soon afterwards he established the first telephone company.

1866
First functional underwater telegraph cable is laid across the Atlantic

1895
Invention of the wireless telegraph

TEXTBLOCK 2/11 // URL: http://world-information.org/wio/infostructure/100437611796/100438659897
 
Economic structure; transparent customers

Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people.

User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying.

"Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent."

(David Sobel, Electronic Privacy Information Center)

TEXTBLOCK 3/11 // URL: http://world-information.org/wio/infostructure/100437611726/100438658925
 
An Economic and therefore Governmental Issue

While the digital divide might bring up the idea that enterprises will be able to sell more and more computers during the next years another truth looks as if there was no hope for a certain percentage of the population to get out of their marginalization, their position of being "have nots".

Studies show that the issue of different colors of skin play a role in this, but more than "racial" issues it is income, age and education that decides about the have and have nots.

There exist ~ 103 million households in the USA.
~6 million do not even have telephone access. Why should they care about computers?

The digital divide cuts the world into centers and peripheries, not into nations, as it runs through the boarder between the North and the South as well as through nations.

http://www.digitaldivide.gov/
http://www.digitaldividenetwork.org/
http://www.pbs.org/digitaldivide/
http://news.cnet.com/news/0-1005-200-344552.html
http://racerelations.about.com/newsissues/racerelations/msubdigdivide.htm
http://www.techweek.com/articles/11-1-99/divide.htm
http://www.ntia.doc.gov/ntiahome/net2/falling.html

The most different institutions with various interests in their background work in that field; not rarely paid by governments, which are interested in inhabitants, connected to the net and economy.
see also: http://www.washington.edu/wto/digital/

Searching information about the digital divide one will find informations saying that it is growing all the time whereas other studies suggest the contrary, like this one
http://news.cnet.com/news/0-1005-200-341054.html

TEXTBLOCK 4/11 // URL: http://world-information.org/wio/infostructure/100437611730/100438659326
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 5/11 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Economic structure; introduction



"Globalization is to no small extent based upon the rise of rapid global communication networks. Some even go so far as to argue that "information has replaced manufacturing as the foundation of the economy". Indeed, global media and communication are in some respects the advancing armies of global capitalism."

(Robert McChesney, author of "Rich Media, Poor Democracy")

"Information flow is your lifeblood."

(Bill Gates, founder of Microsoft)

The usefulness of information and communication technologies increases with the number of people who use them. The more people form part of communication networks, the greater the amount of information that is produced. Microsoft founder Bill Gates dreams of "friction free capitalism", a new stage of capitalism in which perfect information becomes the basis for the perfection of the markets.

But exploitative practices have not disappeared. Instead, they have colonised the digital arena where effective protective regulation is still largely absent.

Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people.

User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying.

"Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent."

(David Sobel, Electronic Privacy Information Center)

TEXTBLOCK 6/11 // URL: http://world-information.org/wio/infostructure/100437611726/100438658916
 
Virtual cartels, introduction

Among the most striking development of the 1990s has been the emergence of a global commercial media market utilizing new technologies and the global trend toward deregulation.
This global commercial media market is a result of aggressive maneuvering by the dominant firms, new technologies that make global systems cost-efficient, and neoliberal economic policies encouraged by the World Bank, IMF, WTO, and the US government to break down regulatory barriers to a global commercial media and telecommunication market.

A global oligopolistic market that covers the spectrum of media is now crystallizing the very high barriers to entry."

(Robert McChesney, author of "Rich Media, Poor Democracy")

The network structure of information and communication technologies means that even deregulated markets are not "free". The functional logic of global networks only tolerates a small number of large players. Mergers, strategic alliances, partnerships and cooperations are therefore the daily routine of the ICT business. They bypass competition and create "virtual cartels".

TEXTBLOCK 7/11 // URL: http://world-information.org/wio/infostructure/100437611709/100438658911
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 8/11 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Advertisers and Marketers Perspective

With the rapid growth of the Internet and its audience advertisers now have a new medium at their disposal. The placement of the first banner ads in 1994 marks the birth of Internet advertising. Although the advertising industry at first hesitated to adopt the new medium, two facts brushed away their doubts:

Migrating Television Audiences: The increased use of the Internet led people to redistribute their time budget. Whereas some cut down on eating and sleeping, more than a third reduced watching television and instead uses the WWW.

Interesting Internet Demographics: While methodologies and approaches of research organizations studying the demographic composition of the Internet vary, the findings are relatively consistent: Internet users are young, well educated and earn high incomes.

Considering those findings, the Internet in the first place seems to become inevitable to be included in media planning, as part of the audience shifts from TV to the WWW, and secondly, because demographics of the Internet user population are irresistible for marketers.

TEXTBLOCK 9/11 // URL: http://world-information.org/wio/infostructure/100437611652/100438657907
 
Internet Advertising

The advertising industry has always relied on media to transport their messages and disseminate them to the public. Depending on the product or service advertised and the audience targeted different media are used. Besides cinema and outdoor advertising (posters etc.) the huge majority of ads is placed within the classical media landscape, which includes TV, newspapers, magazines and radio.

Whereas in most cases only a relatively small fraction of advertising budgets is spent on cinema, outdoor and radio advertising, newspapers, magazines and TV account for more than two thirds of the money spent on ads. Still with the growing popularity of new media advertisers and marketers have recently also discovered digital networks and especially the Internet for their purposes.

TEXTBLOCK 10/11 // URL: http://world-information.org/wio/infostructure/100437611652/100438657946
 
4000 - 1000 B.C.

4th millennium B.C.
In Sumer writing is invented.

Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets were used for administrative purposes. As an instrument for the administrative bodies of early empires, which began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to only very few. Being more or less separated tasks, writing and calculating converge in today's computers.

Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China.

3200 B.C.
In Sumer the seal is invented.

About 3000 B.C.
In Egypt papyrus scrolls and hieroglyphs are used.

About 1350 B.C.
In Assyria the cuneiform script is invented.

1200 B.C.
According to Aeschylus, the conquest of the town of Troy was transmitted via torch signals.

About 1100 B.C.
Egyptians use homing pigeons to deliver military information.

TEXTBLOCK 11/11 // URL: http://world-information.org/wio/infostructure/100437611796/100438659725
 
Public Relations Consultants Association (PRCA)

The PRCA was formed in November 1969 as an association limited by guarantee of up to £5 per member and therefore has no share capital. The PRCA tries to encourage and promote the advancement of companies and firms engaged in public relations consultancy..

INDEXCARD, 1/11
 
Automation

Automation is concerned with the application of machines to tasks once performed by humans or, increasingly, to tasks that would otherwise be impossible. Although the term mechanization is often used to refer to the simple replacement of human labor by machines, automation generally implies the integration of machines into a self-governing system. Automation has revolutionized those areas in which it has been introduced, and there is scarcely an aspect of modern life that has been unaffected by it. Nearly all industrial installations of automation, and in particular robotics, involve a replacement of human labor by an automated system. Therefore, one of the direct effects of automation in factory operations is the dislocation of human labor from the workplace. The long-term effects of automation on employment and unemployment rates are debatable. Most studies in this area have been controversial and inconclusive. As of the early 1990s, there were fewer than 100,000 robots installed in American factories, compared with a total work force of more than 100 million persons, about 20 million of whom work in factories.

INDEXCARD, 2/11
 
National Science Foundation (NSF)

Established in 1950, the National Science Foundation is an independent agency of the U.S. government dedicated to the funding in basic research and education in a wide range of sciences and in mathematics and engineering. Today, the NSF supplies about one quarter of total federal support of basic scientific research at academic institutions.

http://www.nsf.gov

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/0/0,5716,2450+1+2440,00.html

http://www.nsf.gov/
INDEXCARD, 3/11
 
Internet Software Consortium

The Internet Software Consortium (ISC) is a nonprofit corporation dedicated to the production of high-quality reference implementations of Internet standards that meet production standards. Its goal is to ensure that those reference implementations are properly supported and made freely available to the Internet community.

http://www.isc.org

INDEXCARD, 4/11
 
Wide Application Protocol (WAP)

The WAP (Wireless Application Protocol) is a specification for a set of communication protocols to standardize the way that wireless devices, such as cellular telephones and radio transceivers, can be used for Internet access, including e-mail, the World Wide Web, newsgroups, and Internet Relay Chat (IRC).

While Internet access has been possible in the past, different manufacturers have used different technologies. In the future, devices and service systems that use WAP will be able to interoperate.

Source: Whatis.com

INDEXCARD, 5/11
 
Coca-Cola Company

American corporation founded in 1892 and today engaged primarily in the manufacture and sale of syrup and concentrate for Coca-Cola, a sweetened, carbonated beverage that is a cultural institution in the United States and a symbol around the world of American tastes. The company also produces and sells other soft drinks and citrus beverages. Corporate headquarters are in Atlanta, Ga. The post-World War II years saw diversification in the packaging of Coca-Cola and also in the development or acquisition of new products. In 1946 the company purchased rights to the Fanta soft drink, previously developed in Germany. It introduced the lemon-lime drink Sprite in 1961 and the sugar-free cola Tab in 1963. By purchase of Minute Maid Corporation in 1960, it entered the citrus beverage market. In 1982 the company acquired a controlling interest in Columbia Pictures, a motion picture and entertainment company, but sold its interest to Sony Corporation in 1989.

INDEXCARD, 6/11
 
Internet Protocol Number (IP Number)

Every computer using TCP/IP has a 32 bit-Internet address, an IP number. This number consists of a network identifier and of a host identifier. The network identifier is registered at and allocated by a Network Information Center (NIC), the host identifier is allocated by the local network administration.

IP numbers are divided into three classes. Class A is restricted for big-sized organizations, Class B to medium-sized ones as universities, and Class C is dedicated to small networks.

Because of the increasing number of networks worldwide, networks belonging together, as LANs forming a corporate network, are allocated a single IP number.

INDEXCARD, 7/11
 
Java Applets

Java applets are small programs that can be sent along with a Web page to a user. Java applets can perform interactive animations, immediate calculations, or other simple tasks without having to send a user request back to the server. They are written in Java, a platform-independent computer language, which was invented by Sun Microsystems, Inc.

Source: Whatis.com

INDEXCARD, 8/11
 
Edward L. Bernays

Born 1891 in Vienna, Bernays was one of the founders of modern public relations. An enigmatic character, he was a master of mise en scène with far-reaching contacts in the world of business and politics. The nephew of Sigmund Freund and related with Heinrich Heine, he was also among the first to pursue PR for governments and to produce pseudo-events. Bernays considered the manipulation of public opinion as an important element of mass democracies and was of the opinion that only through PR a society's order can be kept.

INDEXCARD, 9/11
 
United Brands Company

American corporation formed in 1970 in the merger of United Fruit Company and AMK Corporation. United Fruit Company, the main company, was founded in 1899 producing and marketing bananas grown in the Caribbean islands, Central America, and Colombia. The principal founder was Minor C. Keith, who had begun to acquire banana plantations and to build a railroad in Costa Rica as early as 1872. In 1884 he contracted with the Costa Rican government to fund the national debt and to lay about 50 more miles of track. In return he received, for 99 years, full rights to these rail lines and 800,000 acres of virgin land, tax exempt for 20 years. By 1930 it had absorbed 20 rival firms and became the largest employer in Central America. As a foreign corporation of conspicuous size, United Fruit sometimes became the target of popular attacks. The Latin-American press often referred to it as el pulpo ("the octopus"), accusing it of exploiting labourers, bribing officials, and influencing governments during the period of Yankee "dollar diplomacy" in the first decades of the 20th century.

INDEXCARD, 10/11
 
Alexander Graham Bell

b., March 3, 1847, Edinburgh

d. Aug. 2, 1922, Beinn Bhreagh, Cape Breton Island, Nova Scotia, Canada

American audiologist and inventor wrongly remembered for having invented the telephone in 1876. Although Bell introduced the first commercial application of the telephone, in fact a German teacher called Reiss invented it.

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/1/0,5716,15411+1+15220,00.html

INDEXCARD, 11/11