Product Placement With television still being very popular, commercial entertainment has transferred the concept of soap operas onto the Web. The first of this new species of "Cybersoaps" was |
|
Biometrics applications: privacy issues All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy. Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control. While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology. The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks. |
|
Optical communication system by Aeneas Tacitus, 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, |
|
IDEA IDEA is another symmetric-key system. It is a block cipher, operating on 64-bit plaintext blocks, having a key-length of 128 bits. |
|