body and mind as defects

In an increasingly technisised world where technology has also become a determinant of value-free values, mind and body are increasingly considered as "imperfect" compared to the brilliant designs of technology. While for centuries the "weakness" of the human flesh has been the object of lamentations, the 21st century seems set to transform the genre of tragedy into a sober technological project of improvement. Within this project, men and women receive the status of "risk factor" which potentially destabilises technological systems, a circumstance which calls for correction and control measures.

Two main ways of checking the risk of "human error", as well as inefficiency, irrationality, selfishness, emotional turbulence, and other weaknesses of human beings: by minimizing human participation in technological processes, and, to an increasing extent, by technically eliminating such risk factors in human beings themselves.

Human beings, once considering themselves as the "crown of creation" or the "masters of the world" are reducing themselves to the "human factor" in globally networked technical systems, that factor which still escapes reliable calculation and which, when interacting with fast and potent technical environments, is a source of imperfection. For the human mind and body to perfect itself - to adapt itself to the horizon of perfection of science and technology - takes long time periods of discipline, learning, even biological evolution.

In the calculating thinking required in highly technisised context, mind and body inevitably appear as deficient compared to a technology which, unlike the human organism, has the potential of fast and controlled "improvement". Surely, the human organism has always been prey to defects, to "illnesses" and "disablement". Disease has therefore been one of the main motivations behind the development of Bio-ITs: Bio-ITs are being developed to help the blind get their eyesight back, the deaf to hear, the lame to walk, the depressed to be happy. Such medical applications of Bio-ITs are nothing essentially new: Captain Silver's crunch, the wheelchair, a tooth filling save the same basic purpose of correcting a physical deficiency.

But there is a much wider scope to this new development, in which the "normal" biological condition of a human being, such as proneness to death, forgetfulness, aging, inefficiency, solitude, or boredom are understood as defects which can and should be corrected. The use of ITs to overcome such "biological" constraints is often seen as the "ultimate" technological advance, even if the history of utopian visions connected to technological innovation is as old as it is rife with surprise, disappointment, and disaster.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611777/100438658726
 
Biometric applications: surveillance

Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.

Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.

Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
 
Terrestrial antennas

Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks.

The implementation of the Wide Application Protocol (WAP) makes the wireless access to Internet services as E-Mail and even the World Wide Web via cellular phones convenient. Therefore microwave transmission systems become increasingly important.

INDEXCARD, 1/2
 
Neighboring rights

Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large.

INDEXCARD, 2/2