fingerprint identification

Although fingerprinting smacks of police techniques used long before the dawn of the information age, its digital successor finger scanning is the most widely used biometric technology. It relies on the fact that a fingerprint's uniqueness can be defined by analysing the so-called "minutiae" in somebody's fingerprint. Minutae include sweat pores, distance between ridges, bifurcations, etc. It is estimated that the likelihood of two individuals having the same fingerprint is less than one in a billion.

As an access control device, fingerprint scanning is particularly popular with military institutions, including the Pentagon, and military research facilities. Banks are also among the principal users of this technology, and there are efforts of major credit card companies such as Visa and MasterCard to incorporate this finger print recognition into the bank card environment.

Problems of inaccuracy resulting from oily, soiled or cracked skins, a major impediment in fingerprint technology, have recently been tackled by the development a contactless capturing device (http://www.ddsi-cpc.com) which translates the characteristics of a fingerprint into a digitised image.

As in other biometric technologies, fingerprint recognition is an area where the "criminal justice" market meets the "security market", yet another indication of civilian spheres becomes indistinguishable from the military. The utopia of a prisonless society seems to come within the reach of a technology capable of undermining freedom by an upward spiral driven by identification needs and identification technologies.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611729/100438658358
 
Eliminating online censorship: Freenet, Free Haven and Publius

Protecting speech on the global data networks attracts an increasing attention. The efforts and the corresponding abilities of governmental authorities, corporations and copyright enforcement agencies are countered by similar efforts and abilities of researchers and engineers to provide means for anonymous and uncensored communication, as Freenet, Free Haven and Publius. All three of them show a similar design. Content is split up and spread on several servers. When a file is requested, the pieces are reassembled. This design makes it difficult to censor content. All of these systems are not commercial products.

The most advanced system seems to be Publius. Because of being designed by researchers and engineers at the prestigious AT&T Labs, Publius is a strong statement against online censorship. No longer can it be said that taking a firm stand against the use of technologies limiting the freedom of individuals is a position of radical leftists only.

For more information on Publius, see John Schwartz, Online and Unidentifiable? in: The Washington Post, June 30, 2000, http://www.washingtonpost.com/wp-dyn/articles/A21689-2000Jun29.html .

Freenet web site: http://freenet.sourceforge.net

Free Haven web site: http://www.freehaven.net

Publius web site: http://www.cs.nyu.edu/waldman/publius

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611742/100438658749
 
Palm recognition

In palm recognition a 3-dimensional image of the hand is collected and compared to the stored sample. Palm recognition devices are cumbersome artefacts (unlike fingerprint and iris recognition devices) but can absorb perform a great amount of identification acts in a short time. They are therefore preferably installed in situations where a large number of people is identified, as in airports.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611729/100438658375
 
Adi Shamir

Adi Shamir was one of three persons in a team to invent the RSA public-key cryptosystem. The other two authors were Ron Rivest and Leonard M. Adleman.

INDEXCARD, 1/1