fingerprint identification

Although fingerprinting smacks of police techniques used long before the dawn of the information age, its digital successor finger scanning is the most widely used biometric technology. It relies on the fact that a fingerprint's uniqueness can be defined by analysing the so-called "minutiae" in somebody's fingerprint. Minutae include sweat pores, distance between ridges, bifurcations, etc. It is estimated that the likelihood of two individuals having the same fingerprint is less than one in a billion.

As an access control device, fingerprint scanning is particularly popular with military institutions, including the Pentagon, and military research facilities. Banks are also among the principal users of this technology, and there are efforts of major credit card companies such as Visa and MasterCard to incorporate this finger print recognition into the bank card environment.

Problems of inaccuracy resulting from oily, soiled or cracked skins, a major impediment in fingerprint technology, have recently been tackled by the development a contactless capturing device (http://www.ddsi-cpc.com) which translates the characteristics of a fingerprint into a digitised image.

As in other biometric technologies, fingerprint recognition is an area where the "criminal justice" market meets the "security market", yet another indication of civilian spheres becomes indistinguishable from the military. The utopia of a prisonless society seems to come within the reach of a technology capable of undermining freedom by an upward spiral driven by identification needs and identification technologies.

TEXTBLOCK 1/1 // URL: http://world-information.org/wio/infostructure/100437611729/100438658358
 
Optical communication system by Aeneas Tacitus, 4th century B.C.

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook.

With communication separated from transportation, the distant became near.

Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

http://www.smith.edu/hsc/museum/ancient_inven...
INDEXCARD, 1/1