Biometric applications: surveillance

Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.

Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.

Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
 
Biometrics applications: access to rights

Biometric technologies are increasingly used in order to control access to political rights, such as voting, welfare benefits, etc.

Identification cards with digitised fingerprints are being used in elector identification of voters in some countries (e.g. Mexico and Spain).

Biometric identification is also being introduced in national health care systems, as for example in the Canadian province of Ontario, in Los Angeles and Connecticut. Spain is developing a smart card for all welfare and pension benefits.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611729/100438658821
 
Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
Biometric technologies

In what follows there is a brief description of the principal biometric technologies, whose respective proponents - producers, research laboratories, think tanks - mostly tend to claim superiority over the others. A frequently used definition of "biometric" is that of a "unique, measurable characteristic or trait of a human being for automatically recognizing or verifying identity" (http://www.icsa.net/services/consortia/cbdc/bg/introduction.shtml); biometrics is the study and application of such measurable characteristics. In IT environments, biometrics are categorised as "security" technologies meant to limit access to information, places and other resources to a specific group of people.

All biometric technologies are made up of the same basic processes:

1. A sample of a biometric is first collected, then transformed into digital information and stored as the "biometric template" of the person in question.

2. At every new identification, a second sample is collected and its identity with the first one is examined.

3. If the two samples are identical, the persons identity is confirmed, i.e. the system knows who the person is.

This means that access to the facility or resource can be granted or denied. It also means that information about the persons behaviour and movements has been collected. The system now knows who passed a certain identification point at which time, at what distance from the previous time, and it can combine these data with others, thereby appropriating an individual's data body.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611729/100438658188