Face recognition In order to be able to recognize a person, one commonly looks at this persons face, for it is there where the visual features which distinguish one person from another are concentrated. Eyes in particular seem to tell a story not only about who somebody is, but also about how that persons feel, where his / her attention is directed, etc. People who do not want to show who they are or what is going on inside of them must mask themselves. Consequently, face recognition is a kind of electronic unmasking. "Real" face-to-face communication is a two-way process. Looking at somebody's face means exposing ones own face and allowing the other to look at oneself. It is a mutual process which is only suspended in extraordinary and voyeuristic situations. Looking at somebody without being looked at places the person who is visually exposed in a vulnerable position vis-à-vis the watcher. In face recognition this extraordinary situation is normal. Looking at the machine, you only see yourself looking at the machine. Face biometrics are extracted anonymously and painlessly by a mask without a face. Therefore the resistance against the mass appropriation of biometrical data through surveillance cameras is confronted with particular difficulties. The surveillance structure is largely invisible, it is not evident what the function of a particular camera is, nor whether it is connected to a face recognition system. In a protest action against the face recognition specialist According to |
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|