Global Data Flows

Fiber-optic cables, coaxial cables, copper wires, electric power lines, microwaves, satellite communication, mobile telephony, computer networks: Various telecommunication networks following a variety of standards with bewildering abbreviations - DSL, WAP, GSM, UMTS, Ipv4 etc. - and carrying endless flows of capital and information are the blood veins of modern societies.

In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy.

Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries.

This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611791/100438658776
 
Biometric technologies

In what follows there is a brief description of the principal biometric technologies, whose respective proponents - producers, research laboratories, think tanks - mostly tend to claim superiority over the others. A frequently used definition of "biometric" is that of a "unique, measurable characteristic or trait of a human being for automatically recognizing or verifying identity" (http://www.icsa.net/services/consortia/cbdc/bg/introduction.shtml); biometrics is the study and application of such measurable characteristics. In IT environments, biometrics are categorised as "security" technologies meant to limit access to information, places and other resources to a specific group of people.

All biometric technologies are made up of the same basic processes:

1. A sample of a biometric is first collected, then transformed into digital information and stored as the "biometric template" of the person in question.

2. At every new identification, a second sample is collected and its identity with the first one is examined.

3. If the two samples are identical, the persons identity is confirmed, i.e. the system knows who the person is.

This means that access to the facility or resource can be granted or denied. It also means that information about the persons behaviour and movements has been collected. The system now knows who passed a certain identification point at which time, at what distance from the previous time, and it can combine these data with others, thereby appropriating an individual's data body.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611729/100438658188
 
Face recognition

In order to be able to recognize a person, one commonly looks at this persons face, for it is there where the visual features which distinguish one person from another are concentrated. Eyes in particular seem to tell a story not only about who somebody is, but also about how that persons feel, where his / her attention is directed, etc. People who do not want to show who they are or what is going on inside of them must mask themselves. Consequently, face recognition is a kind of electronic unmasking.

"Real" face-to-face communication is a two-way process. Looking at somebody's face means exposing ones own face and allowing the other to look at oneself. It is a mutual process which is only suspended in extraordinary and voyeuristic situations. Looking at somebody without being looked at places the person who is visually exposed in a vulnerable position vis-à-vis the watcher.

In face recognition this extraordinary situation is normal. Looking at the machine, you only see yourself looking at the machine. Face biometrics are extracted anonymously and painlessly by a mask without a face.

Therefore the resistance against the mass appropriation of biometrical data through surveillance cameras is confronted with particular difficulties. The surveillance structure is largely invisible, it is not evident what the function of a particular camera is, nor whether it is connected to a face recognition system.

In a protest action against the face recognition specialist Visionics, the Surveillance Camera Players therefor adopted the strategy of re-masking: in front of the cameras, they perfomed the play "The Masque of the Red Death" an adaption of Edgar Allen Poe's classic short story by Art Toad.

According to Visionics, whose slogan is "enabling technology with a mass appeal", there are alrady 1.1 bn digitised face images stored on identification data banks world wide. When combined with wide area surveillance camera networks, face recognition is capable of creating a transparent social space that can be controlled by a depersonalised, undetected and unaccountable centre. It is a technology, of which the surveillance engeneers of sunken totalitarian regimes may have dreamt, and one that today is being adopted by democratic governments.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611729/100438658118
 
Internet Societal Task Force

The Internet Societal Task Force is an organization under the umbrella of the Internet Society dedicated to assure that the Internet is for everyone by identifying and characterizing social and economic issues associated with the growth and use of Internet. It supplements the technical tasks of the Internet Architecture Board, the Internet Engineering Steering Group and the Internet Engineering Task Force.

Topics under discussion are social, economic, regulatory, physical barriers to the use of the Net, privacy, interdependencies of Internet penetration rates and economic conditions, regulation and taxation.

http://www.istf.isoc.org/

http://www.istf.isoc.org/
INDEXCARD, 1/3
 
The Internet Engineering Task Force

The Internet Engineering Task Force contributes to the evolution of the architecture, the protocols and technologies of the Net by developing new Internet standard specifications. The directors of its functional areas form the Internet Engineering Steering Group.

Internet Society: http://www.ietf.org

http://www.ietf.org/
INDEXCARD, 2/3
 
Internet Protocol Number (IP Number)

Every computer using TCP/IP has a 32 bit-Internet address, an IP number. This number consists of a network identifier and of a host identifier. The network identifier is registered at and allocated by a Network Information Center (NIC), the host identifier is allocated by the local network administration.

IP numbers are divided into three classes. Class A is restricted for big-sized organizations, Class B to medium-sized ones as universities, and Class C is dedicated to small networks.

Because of the increasing number of networks worldwide, networks belonging together, as LANs forming a corporate network, are allocated a single IP number.

INDEXCARD, 3/3