Iris recognition

Iris recognition relies upon the fact that every individuals retina has a unique structure. The iris landscape is composed of a corona, crypts, filaments, freckles, pits radial furrows and striatations. Iris scanning is considered a particularly accurate identification technology because the characteristics of the iris do not change during a persons lifetime, and because there are several hundred variables in an iris which can be measured. In addition, iris scanning is fast: it does not take longer than one or two seconds.

These are characteristics which have made iris scanning an attractive technology for high-security applications such as prison surveillance. Iris technology is also used for online identification where it can substitute identification by password. As in other biometric technologies, the use of iris scanning for the protection of privacy is a two-edged sword. The prevention of identity theft applies horizontally but not vertically, i.e. in so far as the data retrieval that accompanies identification and the data body which is created in the process has nothing to do with identity theft.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611729/100438658334
 
Face recognition

In order to be able to recognize a person, one commonly looks at this persons face, for it is there where the visual features which distinguish one person from another are concentrated. Eyes in particular seem to tell a story not only about who somebody is, but also about how that persons feel, where his / her attention is directed, etc. People who do not want to show who they are or what is going on inside of them must mask themselves. Consequently, face recognition is a kind of electronic unmasking.

"Real" face-to-face communication is a two-way process. Looking at somebody's face means exposing ones own face and allowing the other to look at oneself. It is a mutual process which is only suspended in extraordinary and voyeuristic situations. Looking at somebody without being looked at places the person who is visually exposed in a vulnerable position vis-à-vis the watcher.

In face recognition this extraordinary situation is normal. Looking at the machine, you only see yourself looking at the machine. Face biometrics are extracted anonymously and painlessly by a mask without a face.

Therefore the resistance against the mass appropriation of biometrical data through surveillance cameras is confronted with particular difficulties. The surveillance structure is largely invisible, it is not evident what the function of a particular camera is, nor whether it is connected to a face recognition system.

In a protest action against the face recognition specialist Visionics, the Surveillance Camera Players therefor adopted the strategy of re-masking: in front of the cameras, they perfomed the play "The Masque of the Red Death" an adaption of Edgar Allen Poe's classic short story by Art Toad.

According to Visionics, whose slogan is "enabling technology with a mass appeal", there are alrady 1.1 bn digitised face images stored on identification data banks world wide. When combined with wide area surveillance camera networks, face recognition is capable of creating a transparent social space that can be controlled by a depersonalised, undetected and unaccountable centre. It is a technology, of which the surveillance engeneers of sunken totalitarian regimes may have dreamt, and one that today is being adopted by democratic governments.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611729/100438658118
 
Critical Art Ensemble

Critical Art Ensemble is a collective of five artists of various specializations dedicated to exploring the intersections between art, technology, radical politics, and critical theory. CAE have published a number of books and carried out innovative art projects containing insightful and ironic theoretical contributions to media art. Projects include Addictionmania, Useless Technology, The Therapeutic State, Diseases of Consciousness, Machineworld, As Above So Below, and Flesh Machine.

http://www.critical-art.net

INDEXCARD, 1/2
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 2/2