|
Data bunkers Personal data are collected, appropriated, processed and used for commercial purposes on a global scale. In order for such a global system to operate smoothly, there a server nodes at which the data streams converge. Among the foremost of these are the data bases of credit card companies, whose operation has long depended on global networking. On top of credit card companies such as Visa, American Express, Master Card, and others. It would be erroneous to believe that the primary purpose of business of these companies is the provision of credit, and the facilitation of credit information for sale transactions. In fact, Information means much more than just credit information. In an advertisement of 1982, American Express described itself in these terms: ""Our product is information ...Information that charges airline tickets, hotel rooms, dining out, the newest fashions ...information that grows money funds buys and sells equities ...information that pays life insurance annuities ...information that schedules entertainment on cable television and electronically guards houses ...information that changes kroners into guilders and figures tax rates in Bermuda ..." Information has become something like the gospel of the New Economy, a doctrine of salvation - the life blood of society, as Bill Gates expresses it. But behind information there are always data that need to be generated and collected. Because of the critical importance of data to the economy, their possession amounts to power and their loss can cause tremendous damage. The data industry therefore locates its data warehouses behind fortifications that bar physical or electronic access. Such structures are somewhat like a digital reconstruction of the medieval fortress Large amounts of data are concentrated in fortress-like structures, in data bunkers. As the |
|
|
|
Challenges for Copyright by ICT: Copyright Owners The main concern of copyright owners as the (in terms of Reproduction and Distribution Unlike copies of works made using analog copiers (photocopy machines, video recorders etc.) digital information can be reproduced extremely fast, at low cost and without any loss in quality. Since each copy is a perfect copy, no quality-related limits inhibit pirates from making as many copies as they please, and recipients of these copies have no incentive to return to authorized sources to get another qualitatively equal product. Additionally the costs of making one extra copy of intellectual property online are insignificant, as are the distribution costs if the copy is moved to the end user over the Internet. Control and Manipulation In cross-border, global data networks it is almost impossible to control the exploitation of protected works. Particularly the use of anonymous remailers and other existing technologies complicates the persecution of pirates. Also digital files are especially vulnerable to manipulation, of the work itself, and of the (in some cases) therein-embedded |
|
|
|
Product Placement With television still being very popular, commercial entertainment has transferred the concept of soap operas onto the Web. The first of this new species of "Cybersoaps" was |
|
|
|
Identificaiton in history In biometric technology, the subject is reduced to its physical and therefore inseparable properties. The subject is a subject in so far as it is objectified; that is, in so far as is identified with its own res extensa, Descartes' "extended thing". The subject exists in so far as it can be objectified, if it resists the objectification that comes with measurement, it is rejected or punished. Biometrics therefore provides the ultimate tool for control; in it, the dream of hermetic identity control seems to become a reality, a modern technological reconstruction of traditional identification techniques such as the handshake or the look into somebody's eyes. The use of identification by states and other institutions of authority is evidently not simply a modern phenomenon. The ancient Babylonians and Chinese already made use of finger printing on clay to identify authors of documents, while the Romans already systematically compared handwritings. Body measurement has long been used by the military. One of the first measures after entering the military is the identification and appropriation of the body measurements of a soldier. These measurements are filed and combined with other data and make up what today we would call the soldier's data body. With his data body being in possession of the authority, a soldier is no longer able freely socialise and is instead dependent on the disciplinary structure of the military institution. The soldier's social being in the world is defined by the military institution. However, the military and civilian spheres of modern societies are no longer distinct entities. The very ambivalence of advanced technology (dual use technologies) has meant that "good" and "bad" uses of technology can no longer be clearly distinguished. The measurement of physical properties and the creation of data bodies in therefore no longer a military prerogative, it has become diffused into all areas of modern societies. If the emancipatory potential of weak identities is to be of use, it is therefore necessary to know how biometric technologies work and what uses they are put to. |
|
|
|
Xerxes Xerxes (~519-465 BC) was Persian King from 485-465 BC. He led his Army against the Greek but finally was defeated. He was the father of Alexander the Great. |
|
|
|
Network Information Center (NIC) Network information centers are organizations responsible for registering and maintaining the domain names on the |
|
|
|
Roman smoke telegraph network, 150 A.D. The Roman smoke signals network consisted of towers within visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling. For a similar telegraph network in ancient Greece see |
|
|
|
DES The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys. for more information see: |
|
|