4000 - 1000 B.C.

4th millennium B.C.
In Sumer writing is invented.

Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets were used for administrative purposes. As an instrument for the administrative bodies of early empires, which began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to only very few. Being more or less separated tasks, writing and calculating converge in today's computers.

Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China.

3200 B.C.
In Sumer the seal is invented.

About 3000 B.C.
In Egypt papyrus scrolls and hieroglyphs are used.

About 1350 B.C.
In Assyria the cuneiform script is invented.

1200 B.C.
According to Aeschylus, the conquest of the town of Troy was transmitted via torch signals.

About 1100 B.C.
Egyptians use homing pigeons to deliver military information.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611796/100438659725
 
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights)

Another important multilateral treaty concerned with intellectual property rights is the TRIPS agreement, which was devised at the inauguration of the Uruguay Round negotiations of the WTO in January 1995. It sets minimum standards for the national protection of intellectual property rights and procedures as well as remedies for their enforcement (enforcement measures include the potential for trade sanctions against non-complying WTO members). The TRIPS agreement has been widely criticized for its stipulation that biological organisms be subject to intellectual property protection. In 1999, 44 nations considered it appropriate to treat plant varieties as intellectual property.

The complete TRIPS agreement can be found on: http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611725/100438659758
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 1/2
 
Blaise Pascal

b. June 19, 1623, Clermont-Ferrand, France
d. August 19, 1662, Paris, France

French mathematician, physicist, religious philosopher, and master of prose. He laid the foundation for the modern theory of probabilities, formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience of God through the heart rather than through reason. The establishment of his principle of intuitionism had an impact on such later philosophers as Jean-Jacques Rousseau and Henri Bergson and also on the Existentialists.

INDEXCARD, 2/2