Positions Towards the Future of Copyright in the "Digital Age"
With the development of new transmission, distribution and publishing technologies and the increasing digitalization of information copyright has become the subject of vigorous debate. Among the variety of attitudes towards the future of traditional copyright protection two main tendencies can be identified:
Eliminate Copyright
Anti-copyrightists believe that any intellectual property should be in the public domain and available for all to use. "Information wants to be free" and copyright restricts people's possibilities concerning the utilization of digital content. An enforced copyright will lead to a further digital divide as copyright creates unjust monopolies in the basic commodity of the "information age". Also the increased ease of copying effectively obviates copyright, which is a relict of the past and should be expunged.
Enlarge Copyright
Realizing the growing economic importance of intellectual property, especially the holders of copyright (in particular the big publishing, distribution and other core copyright industries) - and therefore recipients of the royalties - adhere to the idea of enlarging copyright. In their view the basic foundation of copyright - the response to the need to provide protection to authors so as to give them an incentive to invest the time and effort required to produce creative works - is also relevant in a digital environment.
|
TEXTBLOCK 1/1 // URL: http://world-information.org/wio/infostructure/100437611725/100438659711
|
|
Charles Babbage
b. December 26, 1791, London, England d. October 18, 1871, London, England
English mathematician and inventor who is credited with having conceived the first automatic digital computer. The idea of mechanically calculating mathematical tables first came to Babbage in 1812 or 1813. Later he made a small calculator that could perform certain mathematical computations to eight decimals. During the mid-1830s Babbage developed plans for the so-called analytical engine, the forerunner of the modern digital computer. In this device he envisioned the capability of performing any arithmetical operation on the basis of instructions from punched cards, a memory unit in which to store numbers, sequential control, and most of the other basic elements of the present-day computer.
|
INDEXCARD, 1/2
|
|
Gottfried Wilhelm von Leibniz
b. July 1, 1646, Leipzig d. November 14, 1716, Hannover, Hanover
German philosopher, mathematician, and political adviser, important both as a metaphysician and as a logician and distinguished also for his independent invention of the differential and integral calculus. 1661, he entered the University of Leipzig as a law student; there he came into contact with the thought of men who had revolutionized science and philosophy--men such as Galileo, Francis Bacon, Thomas Hobbes, and René Descartes. In 1666 he wrote De Arte Combinatoria ("On the Art of Combination"), in which he formulated a model that is the theoretical ancestor of some modern computers.
|
INDEXCARD, 2/2
|
|