|
Legal Protection: National Legislation |
|
|
|
Data bunkers Personal data are collected, appropriated, processed and used for commercial purposes on a global scale. In order for such a global system to operate smoothly, there a server nodes at which the data streams converge. Among the foremost of these are the data bases of credit card companies, whose operation has long depended on global networking. On top of credit card companies such as Visa, American Express, Master Card, and others. It would be erroneous to believe that the primary purpose of business of these companies is the provision of credit, and the facilitation of credit information for sale transactions. In fact, Information means much more than just credit information. In an advertisement of 1982, American Express described itself in these terms: ""Our product is information ...Information that charges airline tickets, hotel rooms, dining out, the newest fashions ...information that grows money funds buys and sells equities ...information that pays life insurance annuities ...information that schedules entertainment on cable television and electronically guards houses ...information that changes kroners into guilders and figures tax rates in Bermuda ..." Information has become something like the gospel of the New Economy, a doctrine of salvation - the life blood of society, as Bill Gates expresses it. But behind information there are always data that need to be generated and collected. Because of the critical importance of data to the economy, their possession amounts to power and their loss can cause tremendous damage. The data industry therefore locates its data warehouses behind fortifications that bar physical or electronic access. Such structures are somewhat like a digital reconstruction of the medieval fortress Large amounts of data are concentrated in fortress-like structures, in data bunkers. As the |
|
|
|
Basics: Infringement and Fair Use The Yet copyright laws also provide that the rights of copyright owners are subject to the doctrine of " - the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes (usually certain types of educational copying are allowed) - the nature of the copyrighted work (mostly originals made for commercial reasons are less protected than their purely artistic counterparts) - the amount and substantiality of the portion used in relation to the copyrighted work as a whole - the effect of the use upon the potential market for or value of the copyrighted work (as a general rule copying may be permitted if it is unlikely to cause economic harm to the original author) Examples of activities that may be excused as fair use include: providing a quotation in a book review; distributing copies of a section of an article in class for educational purposes; and imitating a work for the purpose of parody or social commentary. |
|
|
|
Enforcement: Copyright Management and Control Technologies With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of |
|
|
|
Alan Turing b. June 23, 1912, London, England d. June 7, 1954, Wilmslow, Cheshire English mathematician and logician who pioneered in the field of computer theory and who contributed important logical analyses of computer processes. Many mathematicians in the first decades of the 20th century had attempted to eliminate all possible error from mathematics by establishing a formal, or purely algorithmic, procedure for establishing truth. The mathematician Kurt Gödel threw up an obstacle to this effort with his incompleteness theorem. Turing was motivated by Gödel's work to seek an algorithmic method of determining whether any given propositions were undecidable, with the ultimate goal of eliminating them from mathematics. Instead, he proved in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem [Decision Problem]" (1936) that there cannot exist any such universal method of determination and, hence, that mathematics will always contain undecidable propositions. During World War II he served with the Government Code and Cypher School, at Bletchley, Buckinghamshire, where he played a significant role in breaking the codes of the German " |
|
|
|
Martin Hellman Martin Hellman was |
|
|
|
Machine vision A branch of |
|
|
|
Clipper Chip The Clipper Chip is a cryptographic device proposed by the U.S. government that purportedly intended to protect private communications while at the same time permitting government agents to obtain the "keys" upon presentation of what has been vaguely characterized as "legal authorization." The "keys" are held by two government "escrow agents" and would enable the government to access the encrypted private communication. While Clipper would be used to encrypt voice transmissions, a similar chip known as Capstone would be used to encrypt data. The underlying cryptographic algorithm, known as Skipjack, was developed by the National Security Agency (NSA). |
|
|