Enforcement: Copyright Management and Control Technologies With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of |
|
Databody convergence In the phrase "the rise of the citizen as a consumer", to be found on the When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors. There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions. Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control. The world's largest data corporation, Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means. However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone. |
|
Bandwidth The bandwidth of a transmitted communications signal is a measure of the range of frequencies the signal occupies. The term is also used in reference to the frequency-response characteristics of a communications receiving system. All transmitted signals, whether analog or digital, have a certain bandwidth. The same is true of receiving systems. Generally speaking, bandwidth is directly proportional to the amount of data transmitted or received per unit time. In a qualitative sense, bandwidth is proportional to the complexity of the data for a given level of system performance. For example, it takes more bandwidth to download a photograph in one second than it takes to download a page of text in one second. Large sound files, computer programs, and animated videos require still more bandwidth for acceptable system performance. Virtual reality (VR) and full-length three-dimensional audio/visual presentations require the most bandwidth of all. In digital systems, bandwidth is data speed in bits per second (bps). Source: Whatis.com |
|
George Boole b. Nov. 2, 1815, Lincoln, Lincolnshire, England d. Dec. 8, 1864, Ballintemple, County Cork, Ireland English mathematician who helped establish modern symbolic logic and whose algebra of logic, now called Boolean algebra, is basic to the design of digital computer circuits. One of the first Englishmen to write on logic, Boole pointed out the analogy between the algebraic symbols and those that can represent logical forms and syllogisms, showing how the symbols of quantity can be separated from those of operation. With Boole in 1847 and 1854 began the algebra of logic, or what is now called Boolean algebra. It is basically two-valued in that it involves a subdivision of objects into separate classes, each with a given property. Different classes can then be treated as to the presence or absence of the same property. |
|
Satellites Communications satellites are relay stations for radio signals and provide reliable and distance-independent high-speed connections even at remote locations without high-bandwidth infrastructure. On point-to-point transmission, the transmission method originally employed on, satellites face increasing competition from In the future, satellites will become stronger, cheaper and their orbits will be lower; their services might become as common as satellite TV is today. For more information about satellites, see How Satellites Work ( |
|
Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks This book gives a fascinating glimpse of the many documented attempts throughout history to develop effective means for long distance communications. Large-scale communication networks are not a twentieth-century phenomenon. The oldest attempts date back to millennia before Christ and include ingenious uses of homing pigeons, mirrors, flags, torches, and beacons. The first true nationwide data networks, however, were being built almost two hundred years ago. At the turn of the 18th century, well before the electromagnetic telegraph was invented, many countries in Europe already had fully operational data communications systems with altogether close to one thousand network stations. The book shows how the so-called information revolution started in 1794, with the design and construction of the first true telegraph network in France, Chappe's fixed optical network. http://www.it.kth.se/docs/early_net/ |
|