Biometrics applications: privacy issues

All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy.

Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control.

While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology.

The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; http://www.eds.com) are also suppliers of biometric systems to the intelligence agencies of government and industry.

Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611729/100438658826
 
Copyright Management and Control Systems: Post-Infringement

Post-infringement technologies allow the owners of copyrighted works to identify infringements and thus enhance enforcement of intellectual property rights and encompass systems such as:

Steganography

Applied to electronic files, steganography refers to the process of hiding information in files that can not be easily detected by users. Steganography can be used by intellectual property owners in a variety of ways. One is to insert into the file a "digital watermark" which can be used to prove that an infringing file was the creation of the copyright holder and not the pirate. Other possibilities are to encode a unique serial number into each authorized copy or file, enabling the owner to trace infringing copies to a particular source, or to store copyright management information.

Agents

Agents are programs that can implement specified commands automatically. Copyright owners can use agents to search the public spaces of the Internet to find infringing copies. Although the technology is not yet very well developed full-text search engines allow similar uses.

Copyright Litigation

While not every infringement will be the subject of litigation, the threat of litigation helps keep large pirate operations in check. It helps copyright owners obtain relief for specific acts of infringement and publicly warns others of the dangers of infringement.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659699
 
Problems of Copyright Management and Control Technologies

Profiling and Data Mining

At their most basic copyright management and control technologies might simply be used to provide pricing information, negotiate the purchase transaction, and release a copy of a work for downloading to the customer's computer. Still, from a technological point of view, such systems also have the capacity to be employed for digital monitoring. Copyright owners could for example use the transaction records generated by their copyright management systems to learn more about their customers. Profiles, in their crudest form consisting of basic demographic information, about the purchasers of copyrighted material might be created. Moreover copyright owners could use search agents or complex data mining techniques to gather more information about their customers that could either be used to market other works or being sold to third parties.

Fair Use

Through the widespread use of copyright management and control systems the balance of control could excessively be shifted in favor of the owners of intellectual property. The currently by copyright law supported practice of fair use might potentially be restricted or even eliminated. While information in analogue form can easily be reproduced, the protection of digital works through copyright management systems might complicate or make impossible the copying of material for purposes, which are explicitly exempt under the doctrine of fair use.

Provisions concerning technological protection measures and fair use are stated in the DMCA, which provides that "Since copying of a work may be a fair use under appropriate circumstances, section 1201 does not prohibit the act of circumventing a technological measure that prevents copying. By contrast, since the fair use doctrine is not a defense e to the act of gaining unauthorized access to a work, the act of circumventing a technological measure in order to gain access is prohibited." Also the proposed EU Directive on copyright and related rights in the information society contains similar clauses. It distinguishes between the circumvention of technical protection systems for lawful purposes (fair use) and the circumvention to infringe copyright. Yet besides a still existing lack of legal clarity also very practical problems arise. Even if the circumvention of technological protection measures under fair use is allowed, how will an average user without specialized technological know-how be able to gain access or make a copy of a work? Will the producers of copyright management and control systems provide fair use versions that permit the reproduction of copyrighted material? Or will users only be able to access and copy works if they hold a digital "fair use license" ("fair use licenses" have been proposed by Mark Stefik, whereby holders of such licenses could exercise some limited "permissions" to use a digital work without a fee)?

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659629
 
Charles Babbage

b. December 26, 1791, London, England
d. October 18, 1871, London, England

English mathematician and inventor who is credited with having conceived the first automatic digital computer. The idea of mechanically calculating mathematical tables first came to Babbage in 1812 or 1813. Later he made a small calculator that could perform certain mathematical computations to eight decimals. During the mid-1830s Babbage developed plans for the so-called analytical engine, the forerunner of the modern digital computer. In this device he envisioned the capability of performing any arithmetical operation on the basis of instructions from punched cards, a memory unit in which to store numbers, sequential control, and most of the other basic elements of the present-day computer.

INDEXCARD, 1/2
 
George Boole

b. Nov. 2, 1815, Lincoln, Lincolnshire, England
d. Dec. 8, 1864, Ballintemple, County Cork, Ireland

English mathematician who helped establish modern symbolic logic and whose algebra of logic, now called Boolean algebra, is basic to the design of digital computer circuits. One of the first Englishmen to write on logic, Boole pointed out the analogy between the algebraic symbols and those that can represent logical forms and syllogisms, showing how the symbols of quantity can be separated from those of operation. With Boole in 1847 and 1854 began the algebra of logic, or what is now called Boolean algebra. It is basically two-valued in that it involves a subdivision of objects into separate classes, each with a given property. Different classes can then be treated as to the presence or absence of the same property.


INDEXCARD, 2/2