The history of propaganda

Thinking of propaganda some politicians' names are at once remembered, like Caesar, Napoleon, Adolf Hitler, Joseph Stalin or Saddam Hussein.
The history of propaganda has to tell then merely mentioning those names:

TEXTBLOCK 1/14 // URL: http://world-information.org/wio/infostructure/100437611661/100438658185
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 2/14 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Timeline Cryptography - Introduction

Besides oral conversations and written language many other ways of information-transport are known: like the bush telegraph, drums, smoke signals etc. Those methods are not cryptography, still they need en- and decoding, which means that the history of language, the history of communication and the history of cryptography are closely connected to each other
The timeline gives an insight into the endless fight between enciphering and deciphering. The reasons for them can be found in public and private issues at the same time, though mostly connected to military maneuvers and/or political tasks.

One of the most important researchers on Cryptography through the centuries is David Kahn; many parts of the following timeline are originating from his work.

TEXTBLOCK 3/14 // URL: http://world-information.org/wio/infostructure/100437611776/100438658824
 
Atrocity Stories

Atrocity stories are nothing else than lies; the two words "atrocity stories" simply pretend to be more diplomatic.
The purpose is to destroy an image of the enemy, to create a new one, mostly a bad one. The story creating the image is not necessarily made up completely. It can also be a changed into a certain variable direction.
The most important thing about atrocity stories is to follow the line of possibility. Even if the whole story is made up it must be probable or at least possible, following rumors. Most successful might it be if a rumor is spread on purpose, some time before the atrocity story is launched, because as soon as something seems to be familiar, it is easier to believe it.

TEXTBLOCK 4/14 // URL: http://world-information.org/wio/infostructure/100437611661/100438658524
 
Challenges for Copyright by ICT: Copyright Owners

The main concern of copyright owners as the (in terms of income generation) profiteers of intellectual property protection is the facilitation of pirate activities in digital environments.

Reproduction and Distribution

Unlike copies of works made using analog copiers (photocopy machines, video recorders etc.) digital information can be reproduced extremely fast, at low cost and without any loss in quality. Since each copy is a perfect copy, no quality-related limits inhibit pirates from making as many copies as they please, and recipients of these copies have no incentive to return to authorized sources to get another qualitatively equal product. Additionally the costs of making one extra copy of intellectual property online are insignificant, as are the distribution costs if the copy is moved to the end user over the Internet.

Control and Manipulation

In cross-border, global data networks it is almost impossible to control the exploitation of protected works. Particularly the use of anonymous remailers and other existing technologies complicates the persecution of pirates. Also digital files are especially vulnerable to manipulation, of the work itself, and of the (in some cases) therein-embedded copyright management information.

TEXTBLOCK 5/14 // URL: http://world-information.org/wio/infostructure/100437611725/100438659526
 
Late 1950s - Early 1960s: Second Generation Computers

An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.

Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.

Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.

TEXTBLOCK 6/14 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
 
How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 7/14 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
Intellectual Property and the "Information Society" Metaphor

Today the talk about the so-called "information society" is ubiquitous. By many it is considered as the successor of the industrial society and said to represent a new form of societal and economical organization. This claim is based on the argument, that the information society uses a new kind of resource, which fundamentally differentiates from that of its industrial counterpart. Whereas industrial societies focus on physical objects, the information society's raw material is said to be knowledge and information. Yet the conception of the capitalist system, which underlies industrial societies, also continues to exist in an information-based environment. Although there have been changes in the forms of manufacture, the relations of production remain organized on the same basis. The principle of property.

In the context of a capitalist system based on industrial production the term property predominantly relates to material goods. Still even as in an information society the raw materials, resources and products change, the concept of property persists. It merely is extended and does no longer solely consider physical objects as property, but also attempts to put information into a set of property relations. This new kind of knowledge-based property is widely referred to as "intellectual property". Although intellectual property in some ways represents a novel form of property, it has quickly been integrated in the traditional property framework. Whether material or immaterial products, within the capitalist system they are both treated the same - as property.

TEXTBLOCK 8/14 // URL: http://world-information.org/wio/infostructure/100437611725/100438659429
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 9/14 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Hill & Knowlton

Although it is generally hard to distinguish between public relations and propaganda, Hill & Knowlton, the worlds leading PR agency, represents an extraordinary example for the manipulation of public opinion with public relations activities. Hill & Knowlton did not only lobby for countries, accused of the abuse of human rights, like China, Peru, Israel, Egypt and Indonesia, but also represented the repressive Duvalier regime in Haiti.

It furthermore played a central role in the Gulf War. On behalf of the Kuwaiti government it presented a 15-year-old girl to testify before Congress about human rights violations in a Kuwaiti hospital. The girl, later found out to be the daughter of Kuwait's ambassador to the U.S., and its testimony then became the centerpiece of a finely tuned PR campaign orchestrated by Hill & Knowlton and co-ordinated with the White House on behalf of the government of Kuwait an the Citizens for a Free Kuwait group. Inflaming public opinion against Iraq and bringing the U.S. Congress in favor of war in the Gulf, this probably was one of the largest and most effective public relations campaigns in history.

Running campaigns against abortion for the Catholic Church and representing the Church of Scientology, large PR firms like Hill & Knowlton, scarcely hesitate to manipulate public and congressional opinion and government policy through media campaigns, congressional hearings, and lobbying, when necessary. Also co-operation with intelligence agencies seems to be not unknown to Hill & Knowlton.

Accused of pursuing potentially illegal proxy spying operation for intelligence agencies, Richard Cheney, head of Hill & Knowltons New York office, denied this allegations, but said that "... in such a large organization you never know if there's not some sneak operation going on." On the other hand former CIA official Robert T. Crowley acknowledged, that "Hill & Knowlton's overseas offices were perfect 'cover` for the ever-expanding CIA. Unlike other cover jobs, being a public relations specialist did not require technical training for CIA officers." Furthermore the CIA, Crowley admitted, used its Hill & Knowlton connections to "... put out press releases and make media contacts to further its positions. ... Hill & Knowlton employees at the small Washington office and elsewhere distributed this material through CIA assets working in the United States news media."

(Source: Carlisle, Johan: Public Relationships: Hill & Knowlton, Robert Gray, and the CIA. http://mediafilter.org/caq/)

TEXTBLOCK 10/14 // URL: http://world-information.org/wio/infostructure/100437611652/100438658088
 
Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 11/14 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
Basics: Acquisition of Copyright

The laws of almost all countries provide that protection is independent of any formalities. Copyright protection then starts as soon as the work is created.

TEXTBLOCK 12/14 // URL: http://world-information.org/wio/infostructure/100437611725/100438659576
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 13/14 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Challenges for Copyright by ICT: Digital Content Providers

Providers of digital information might be confronted with copyright related problems when using some of the special features of hypertext media like frames and hyperlinks (which both use third party content available on the Internet to enhance a webpage or CD ROM), or operate a search engine or online directory on their website.

Framing

Frames are often used to help define, and navigate within, a content provider's website. Still, when they are used to present (copyrighted) third party material from other sites issues of passing off and misleading or deceptive conduct, as well as copyright infringement, immediately arise.

Hyperlinking

It is generally held that the mere creation of a hyperlink does not, of itself, infringe copyright as usually the words indicating a link or the displayed URL are unlikely to be considered a "work". Nevertheless if a link is clicked on the users browser will download a full copy of the material at the linked address creating a copy in the RAM of his computer courtesy of the address supplied by the party that published the link. Although it is widely agreed that the permission to download material over the link must be part of an implied license granted by the person who has made the material available on the web in the first place, the scope of this implied license is still the subject of debate. Another option that has been discussed is to consider linking fair use.

Furthermore hyperlinks, and other "information location tools", like online directories or search engines could cause their operators trouble if they refer or link users to a site that contains infringing material. In this case it is yet unclear whether providers can be held liable for infringement.

TEXTBLOCK 14/14 // URL: http://world-information.org/wio/infostructure/100437611725/100438659590
 
Chappe's fixed optical network

Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores.

Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best.

Forerunners of Chappe's optical network are the Roman smoke signals network and Aeneas Tacitus' optical communication system.

For more information on early communication networks see Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks.

INDEXCARD, 1/14
 
The Flesh Machine

This is the tile of a book by the Critical Art Ensemble which puts the development of artifical life into a critical historical and political context, defining the power vectors which act as the driving force behind this development. The book is available in a print version (New York, Autonomedia 1998) and in an online version at http://www.critical-art.net/fles/book/index.html

INDEXCARD, 2/14
 
Framing

Framing is the practice of creating a frame or window within a web page where the content of a different web page can be display. Usually when a link is clicked on, the new web page is presented with the reminders of the originating page.

INDEXCARD, 3/14
 
Electronic Data Interchange (EDI)

EDI is an international standard relating to the exchange of trade goods and services. It enables trading partners to conduct routine business transactions, such as purchase orders, invoices and shipping notices independent of the computer platform used by the trading partners. Standardization by EDI translation software assures the correct interpretation of data.

EDI might become increasingly important to electronic commerce.

INDEXCARD, 4/14
 
Apple

Founded by Steve Jobs and Steve Wozniak and headquartered in Cupertino, USA, Apple Computer was the first commercially successful personal computer company.

In 1978 Wozniak invented the first personal computer, the Apple II. IBM countered its successful introduction to the market by introducing a personal computer running MS-DOS, the operating system supplied by Microsoft Corporation. And IBM gained leadership again. Although by introducing the first graphical user interface affordable to consumers having started the desktop publishing revolution, Apple could not regain leadership again.

http://www.apple.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/6/0,5716,115726+1+108787,00.html

http://www.apple.com/
INDEXCARD, 5/14
 
William Frederick Friedman

Friedman is considered the father of U.S.-American cryptoanalysis - he also was the one to start using this term.

INDEXCARD, 6/14
 
water-clocks

The water-clocks are an early long-distance-communication-system. Every communicating party had exactly the same jar, with a same-size-hole that was closed and the same amount of water in it. In the jar was a stick with different messages written on. When one party wanted to tell something to the other it made a fire-sign. When the other answered, both of them opened the hole at the same time. And with the help of another fire-sign closed it again at the same time, too. In the end the water covered the stick until the point of the wanted message.

INDEXCARD, 7/14
 
Agostino Ramelli's reading wheel, 1588

Agostino Ramelli designed a "reading wheel" which allowed browsing through a large number of documents without moving from one spot.

Presenting a large number of books, a small library, laid open on lecterns on a kind of ferry-wheel, allowing us to skip chapters and to browse through pages by turning the wheel to bring lectern after lectern before our eyes, thus linking ideas and texts together, Ramelli's reading wheel reminds of today's browsing software used to navigate the World Wide Web.

INDEXCARD, 8/14
 
Above.net

Headquartered in San Jose, USA, AboveNet Communications is a backbone service provider. Through its extensive peering relationships, the company has built a network with the largest aggregated bandwidth in the world.

http://www.above.net

INDEXCARD, 9/14
 
Microsoft Network

Microsoft Network is the online service from Microsoft Corporation. Although offering direct access to the Internet, mainly proprietary content for entertainment purposes is offered. Best viewed with Microsoft's Internet Explorer.

http://www.msn.com

INDEXCARD, 10/14
 
Harold. D. Lasswell

Harold. D. Lasswell (* 1902) studied at the London School of Economics. He then became a professor of social sciences at different Universities, like the University of Chicago, Columbia University, and Yale University. He also was a consultant for several governments. One of Lasswell's many famous works was Propaganda Technique in World War. In this he defines propaganda. He also discussed major objectives of propaganda, like to mobilize hatred against the enemy, to preserve the friendship of allies, to procure the co-operation of neutrals and to demoralize the enemy.

INDEXCARD, 11/14
 
Instinet

Instinet, a wholly owned subsidiary of Reuters Group plc since 1987, is the world's largest agency brokerage firm and the industry brokerage leader in after hours trading. It trades in over 40 global markets daily and is a member of seventeen exchanges in North America, Europe, and Asia. Its institutional clients represent more than 90 percent of the institutional equity funds under management in the United States. Instinet accounts for about 20 percent of the NASDAQ daily trading volume and trades approximately 170 million shares of all U.S. equities daily.

INDEXCARD, 12/14
 
Blue Box

The blue box-system works with a special blue colored background. The person in front can act as if he/she was filmed anywhere, also in the middle of a war.

INDEXCARD, 13/14
 
Binary number system

In mathematics, the term binary number system refers to a positional numeral system employing 2 as the base and requiring only two different symbols, 0 and 1. The importance of the binary system to information theory and computer technology derives mainly from the compact and reliable manner in which data can be represented in electromechanical devices with two states--such as "on-off," "open-closed," or "go-no go."

INDEXCARD, 14/14