The Piracy "Industry"

Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of intellectual property by permitting still easier copying, electronic sales and transmissions of illegally reproduced copyrighted works on a grand scale.

This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent copy-protection security measures.

Lately the International Intellectual Property Alliance has published a new report on the estimated trade losses due to piracy. (The IIPA assumes that their report actually underestimates the loss of income due to the unlawful copying and distribution of copyrighted works. Yet it should be taken into consideration that the IIPA is the representative of the U.S. core copyright industries (business software, films, videos, music, sound recordings, books and journals, and interactive entertainment software).)

Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)





Motion Pictures

Records & Music

Business Applications

Entertainment Software

Books





1999

1998

1999

1998

1999

1998

1999

1998

1999

1998

Total Losses

1323

1421

1684

1613

3211

3437

3020

2952

673

619



Total Losses (core copyright industries)

1999

1998

9910.0

10041.5




TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659531
 
Virtual body and data body



The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world.

But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the Critical Art Ensemble observe in their book Flesh Machine, the data body is the "fascist sibling" of the virtual body; it is " a much more highly developed virtual form, and one that exists in complete service to the corporate and police state."

The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question.

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611761/100438659695
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Biometrics applications: privacy issues

All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy.

Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control.

While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology.

The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; http://www.eds.com) are also suppliers of biometric systems to the intelligence agencies of government and industry.

Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks.

TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611729/100438658826
 
Basics: Acquisition of Copyright

The laws of almost all countries provide that protection is independent of any formalities. Copyright protection then starts as soon as the work is created.

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659576
 
Sergei Eisenstein

Though Sergei Eisenstein (1898-1948) made only seven films in his entire career, he was the USSR's most important movie-conductor in the 1920s and 1930s. His typical style, putting mountains of metaphors and symbols into his films, is called the "intellectual montage" and was not always understood or even liked by the audience. Still, he succeeded in mixing ideological and abstract ideas with real stories. His most famous work was The Battleship Potemkin (1923).

INDEXCARD, 1/7
 
Xerxes

Xerxes (~519-465 BC) was Persian King from 485-465 BC. He led his Army against the Greek but finally was defeated. He was the father of Alexander the Great.

INDEXCARD, 2/7
 
John von Neumann

b. December 3, 1903, Budapest, Hungary
d. February 8, 1957, Washington, D.C., U.S.

Mathematician who made important contributions in quantum physics, logic, meteorology, and computer science. His theory of games had a significant influence upon economics. In computer theory, von Neumann did much of the pioneering work in logical design, in the problem of obtaining reliable answers from a machine with unreliable components, the function of "memory," machine imitation of "randomness," and the problem of constructing automata that can reproduce their own kind.

INDEXCARD, 3/7
 
Bertelsmann

The firm began in Germany in 1835, when Carl Bertelsmann founded a religious print shop and publishing establishment in the Westphalian town of Gütersloh. The house remained family-owned and grew steadily for the next century, gradually adding literature, popular fiction, and theology to its title list. Bertelsmann was shut down by the Nazis in 1943, and its physical plant was virtually destroyed by Allied bombing in 1945. The quick growth of the Bertelsmann empire after World War II was fueled by the establishment of global networks of book clubs (from 1950) and music circles (1958). By 1998 Bertelsmann AG comprised more than 300 companies concentrated on various aspects of media. During fiscal year 1997-98, Bertelsmann earned more than US$15 billion in revenue and employed 58.000 people, of whom 24.000 worked in Germany.

INDEXCARD, 4/7
 
Alan Turing

b. June 23, 1912, London, England
d. June 7, 1954, Wilmslow, Cheshire

English mathematician and logician who pioneered in the field of computer theory and who contributed important logical analyses of computer processes. Many mathematicians in the first decades of the 20th century had attempted to eliminate all possible error from mathematics by establishing a formal, or purely algorithmic, procedure for establishing truth. The mathematician Kurt Gödel threw up an obstacle to this effort with his incompleteness theorem. Turing was motivated by Gödel's work to seek an algorithmic method of determining whether any given propositions were undecidable, with the ultimate goal of eliminating them from mathematics. Instead, he proved in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem [Decision Problem]" (1936) that there cannot exist any such universal method of determination and, hence, that mathematics will always contain undecidable propositions. During World War II he served with the Government Code and Cypher School, at Bletchley, Buckinghamshire, where he played a significant role in breaking the codes of the German "Enigma Machine". He also championed the theory that computers eventually could be constructed that would be capable of human thought, and he proposed the Turing test, to assess this capability. Turing's papers on the subject are widely acknowledged as the foundation of research in artificial intelligence. In 1952 Alan M. Turing committed suicide, probably because of the depressing medical treatment that he had been forced to undergo (in lieu of prison) to "cure" him of homosexuality.

INDEXCARD, 5/7
 
UNIVAC

Built by Remington Rand in 1951 the UNIVAC I (Universal Automatic Computer) was one of the first commercially available computers to take advantage of the development of the central processing unit (CPU). Both the U.S. Census bureau and General Electric owned UNIVACs. Speed: 1,905 operations per second; input/output: magnetic tape, unityper, printer; memory size: 1,000 12-digit words in delay line; technology: serial vacuum tubes, delay lines, magnetic tape; floor space: 943 cubic feet; cost: F.O.B. factory U.S.$ 750,000 plus U.S.$ 185,000 for a high speed printer.

INDEXCARD, 6/7
 
George Boole

b. Nov. 2, 1815, Lincoln, Lincolnshire, England
d. Dec. 8, 1864, Ballintemple, County Cork, Ireland

English mathematician who helped establish modern symbolic logic and whose algebra of logic, now called Boolean algebra, is basic to the design of digital computer circuits. One of the first Englishmen to write on logic, Boole pointed out the analogy between the algebraic symbols and those that can represent logical forms and syllogisms, showing how the symbols of quantity can be separated from those of operation. With Boole in 1847 and 1854 began the algebra of logic, or what is now called Boolean algebra. It is basically two-valued in that it involves a subdivision of objects into separate classes, each with a given property. Different classes can then be treated as to the presence or absence of the same property.


INDEXCARD, 7/7