Other biometric technologies

Other biometric technologies not specified here include ear recognition, signature dynamics, key stroke dynamics, vein pattern recognition, retinal scan, body odour recognition, and DNA recognition. These are technologies which are either in early stages of development or used in highly specialised and limited contexts.

TEXTBLOCK 1/9 // URL: http://world-information.org/wio/infostructure/100437611729/100438658399
 
Transparent customers. Direct marketing online



This process works even better on the Internet because of the latter's interactive nature. "The Internet is a dream to direct marketers", said Wil Lansing, CEO of the American retailer Fingerhut Companies. Many services require you to register online, requiring users to provide as much information about them as possible. And in addition, the Internet is fast, cheap and used by people who tend to be young and on the search for something interesting.

Many web sites also are equipped with user tracking technology that registers a users behaviour and preferences during a visit. For example, user tracking technology is capable of identifying the equipment and software employed by a user, as well as movements on the website, visit of links etc. Normally such information is anonymous, but can be personalised when it is coupled with online registration, or when personal identifcation has been obtained from other sources. Registration is often a prerequisite not just for obtaining a free web mail account, but also for other services, such as personalised start pages. Based on the information provided by user, the start page will then include advertisements and commercial offers that correspond to the users profile, or to the user's activity on the website.

One frequent way of obtaining such personal information of a user is by offering free web mail accounts offered by a great many companies, internet providers and web portals (e.g. Microsoft, Yahoo, Netscape and many others). In most cases, users get "free" accounts in return for submitting personal information and agreeing to receive marketing mails. Free web mail accounts are a simple and effective direct marketing and data capturing strategy which is, however, rarely understood as such. However, the alliances formed between direct advertising and marketing agencies on the one hand, and web mail providers on the other hand, such as the one between DoubleClick and Yahoo, show the common logic of data capturing and direct marketing. The alliance between DoubleClick and Yahoo eventually attracted the US largest direct marketing agency, Abacus Direct, who ended up buying DoubleClick.

However, the intention of collecting users personal data and create consumer profiles based on online behaviour can also take on more creative and playful forms. One such example is sixdegrees.com. This is a networking site based on the assumption that everybody on the planet is connected to everybody else by a chain of six people at most. The site offers users to get to know a lot of new people, the friends of their friends of their friends, for example, and if they try hard enough, eventually Warren Beatty or Claudia Schiffer. But of course, in order to make the whole game more useful for marketing purposes, users are encouraged to join groups which share common interests, which are identical with marketing categories ranging from arts and entertainment to travel and holiday. Evidently, the game becomes more interesting the more new people a user brings into the network. What seems to be fun for the 18 to 24 year old college student customer segment targeted by sixdegrees is, of course, real business. While users entertain themselves they are being carefully profiled. After all, data of young people who can be expected to be relatively affluent one day are worth more than money.

The particular way in which sites such as sixdegrees.com and others are structured mean that not only to users provide initial information about them, but also that this information is constantly updated and therefore becomes even more valuable. Consequently, many free online services or web mail providers cancel a user's account if it has not been uses for some time.

There are also other online services which offer free services in return for personal information which is then used for marketing purposes, e.g. Yahoo's Geocities, where users may maintain their own free websites, Bigfoot, where people are offered a free e-mail address for life, that acts as a relais whenever a customer's residence or e-mail address changes. In this way, of course, the marketers can identify friendship and other social networks, and turn this knowledge into a marketing advantage. People finders such as WhoWhere? operate along similar lines.

A further way of collecting consumer data that has recently become popular is by offering free PCs. Users are provided with a PC for free or for very little money, and in return commit themselves to using certain services rather than others (e.g. a particular internet provider), providing information about themselves, and agree to have their online behaviour monitored by the company providing the PC, so that accurate user profiles can be compiled. For example, the Free PC Network offers advertisers user profiles containing "over 60 individual demographics". There are literally thousands of variations of how a user's data are extracted and commercialised when online. Usually this happens quietly in the background.

A good inside view of the world of direct marketing can be gained at the website of the American Direct Marketing Association and the Federation of European Direct Marketing.

TEXTBLOCK 2/9 // URL: http://world-information.org/wio/infostructure/100437611761/100438659667
 
Enforcement: Copyright Management and Control Technologies

With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of copyright management systems. Technological protection for their works, the copyright industry argues, is necessary to prevent widespread infringement, thus giving them the incentive to make their works available online. In their view the ideal technology should be "capable of detecting, preventing, and counting a wide range of operations, including open, print, export, copying, modifying, excerpting, and so on." Additionally such systems could be used to maintain "records indicating which permissions have actually been granted and to whom".

TEXTBLOCK 3/9 // URL: http://world-information.org/wio/infostructure/100437611725/100438659674
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 4/9 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Virtual body and data body



The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world.

But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the Critical Art Ensemble observe in their book Flesh Machine, the data body is the "fascist sibling" of the virtual body; it is " a much more highly developed virtual form, and one that exists in complete service to the corporate and police state."

The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question.

TEXTBLOCK 5/9 // URL: http://world-information.org/wio/infostructure/100437611761/100438659695
 
Internet, Intranets, Extranets, and Virtual Private Networks

With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are proprietary networks.

Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term "proprietary networks" into terms to be explained and speak of Intranets, Extranets, and Virtual Private Networks.

Cable TV networks and online services as Europe Online, America Online, and Microsoft Network are also proprietary networks. Although their services resemble Internet services, they offer an alternative telecommunication infrastructure with access to Internet services for their subscribers.
America Online is selling its service under the slogan "We organize the Web for you!" Such promises are more frightening than promising because "organizing" is increasingly equated with "filtering" of seemingly objectionable messages and "rating" of content. For more information on these issues, click here If you want to know more about the technical nature of computer networks, here is a link to the corresponding article in the Encyclopaedia Britannica.

Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Society for Worldwide Interbank Financial Telecommunication (SWIFT). According to SWIFT, in 1998 the average daily value of payments messages was estimated to be above U$ 2 trillion.

Electronic Communications Networks as Instinet force stock exchanges to redefine their positions in trading of equities. They offer faster trading at reduced costs and better prices on trades for brokers and institutional investors as mutual funds and pension funds. Last, but not least clients are not restricted to trading hours and can trade anonymously and directly, thereby bypassing stock exchanges.

TEXTBLOCK 6/9 // URL: http://world-information.org/wio/infostructure/100437611791/100438658384
 
Basics: Infringement and Fair Use

The rights of a copyright holder are infringed when one of the acts requiring the authorization of the owner is done by someone else without his consent. In the case of copyright infringement or the violation of neighboring rights the remedies for the copyright owner consist of civil redress. The unauthorized copying of protected works for commercial purposes and the unauthorized commercial dealing in copied material is usually referred to as "piracy".

Yet copyright laws also provide that the rights of copyright owners are subject to the doctrine of "fair use". That allows the reproduction and use of a work, notwithstanding the rights of the author, for limited purposes such as criticism, comment, news reporting, teaching, and research. Fair use may be described as the privilege to use the copyrighted material in a reasonable manner without the owner's consent. To determine whether a use is fair or not most copyright laws consider:

- the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes (usually certain types of educational copying are allowed)

- the nature of the copyrighted work (mostly originals made for commercial reasons are less protected than their purely artistic counterparts)

- the amount and substantiality of the portion used in relation to the copyrighted work as a whole

- the effect of the use upon the potential market for or value of the copyrighted work (as a general rule copying may be permitted if it is unlikely to cause economic harm to the original author)

Examples of activities that may be excused as fair use include: providing a quotation in a book review; distributing copies of a section of an article in class for educational purposes; and imitating a work for the purpose of parody or social commentary.

TEXTBLOCK 7/9 // URL: http://world-information.org/wio/infostructure/100437611725/100438659569
 
Challenges for Copyright by ICT: Internet Service Providers

ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning caching, information residing on systems or networks of ISPs at the directions of users and transitory communication.

Caching

Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated.

Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts).

Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the DMCA or the proposed EU Directive on copyright and related rights in the information society (amended version) have provided exceptions for ISPs concerning particular acts of reproduction that are considered technical copies (caching). Nevertheless the exemption of liability for ISPs only applies if they meet a variety of specific conditions. In the course of the debate about caching also suggestions have been made to subject it to an implied license or fair use defense or make it (at least theoretically) actionable.

Information Residing on Systems or Networks at the Direction of Users

ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances.

Transitory Communication

In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions.

For more information on copyright (intellectual property) related problems of ISPs (BBSs (Bulletin Board Service Operators), systems operators and other service providers) see:

Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Intellectual Property and Technology Forum. June 4, 1999.

Teran, G.: Who is Vulnerable to Suit? ISP Liability for Copyright Infringement. November 2, 1999.

TEXTBLOCK 8/9 // URL: http://world-information.org/wio/infostructure/100437611725/100438659550
 
Legal Protection: European Union

Within the EU's goal of establishing a European single market also intellectual property rights are of significance. Therefore the European Commission aims at the harmonization of the respective national laws of the EU member states and for a generally more effective protection of intellectual property on an international level. Over the years it has adopted a variety of Conventions and Directives concerned with different aspects of the protection of industrial property as well as copyright and neighboring rights.

An overview of EU activities relating to intellectual property protection is available on the website of the European Commission (DG Internal Market): http://www.europa.eu.int/comm/internal_market/en/intprop/intprop/index.htm

TEXTBLOCK 9/9 // URL: http://world-information.org/wio/infostructure/100437611725/100438659574
 
Caching

Caching generally refers to the process of making an extra copy of a file or a set of files for more convenient retrieval. On the Internet caching of third party files can occur either locally on the user's client computer (in the RAM or on the hard drive) or at the server level ("proxy caching"). A requested file that has been cached will then be delivered from the cache rather than a fresh copy being retrieved over the Internet.

INDEXCARD, 1/12
 
The Internet Engineering Task Force

The Internet Engineering Task Force contributes to the evolution of the architecture, the protocols and technologies of the Net by developing new Internet standard specifications. The directors of its functional areas form the Internet Engineering Steering Group.

Internet Society: http://www.ietf.org

http://www.ietf.org/
INDEXCARD, 2/12
 
Convergence, 2000-

Digital technologies are used to combine previously separated communication and media systems as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence".

Classical dichotomies as the one of computing and telephony and traditional categorisations no longer apply, because these new services no longer fit traditional categories.

INDEXCARD, 3/12
 
WTO

An international organization designed to supervise and liberalize world trade. The WTO (World Trade Organization) is the successor to the General Agreement on Tariffs and Trade (GATT), which was created in 1947 and liberalized the world's trade over the next five decades. The WTO came into being on Jan. 1, 1995, with 104 countries as its founding members. The WTO is charged with policing member countries' adherence to all prior GATT agreements, including those of the last major GATT trade conference, the Uruguay Round (1986-94), at whose conclusion GATT had formally gone out of existence. The WTO is also responsible for negotiating and implementing new trade agreements. The WTO is governed by a Ministerial Conference, which meets every two years; a General Council, which implements the conference's policy decisions and is responsible for day-to-day administration; and a director-general, who is appointed by the Ministerial Conference. The WTO's headquarters are in Geneva, Switzerland.



INDEXCARD, 4/12
 
PGP

A cryptographic software application that was developed by Phil Zimmerman at the Massachusetts Institute of Technology. Pretty Good Privacy (PGP) is a cryptographic product family that enables people to securely exchange messages, and to secure files, disk volumes and network connections with both privacy and strong authentication.

INDEXCARD, 5/12
 
Defense Advanced Research Project Agency (DARPA)

DARPA (Defense Advanced Research Projects Agency) is the independent research branch of the U.S. Department of Defense that, among its other accomplishments, funded a project that in time was to lead to the creation of the Internet. Originally called ARPA (the "D" was added to its name later), DARPA came into being in 1958 as a reaction to the success of Sputnik, Russia's first manned satellite. DARPA's explicit mission was (and still is) to think independently of the rest of the military and to respond quickly and innovatively to national defense challenges.

In the late 1960s, DARPA provided funds and oversight for a project aimed at interconnecting computers at four university research sites. By 1972, this initial network, now called the ARPAnet, had grown to 37 computers. ARPANet and the technologies that went into it, including the evolving Internet Protocol (IP) and the Transmission Control Protocol (TCP), led to the Internet that we know today.

http://www.darpa.mil

INDEXCARD, 6/12
 
Network Information Center (NIC)

Network information centers are organizations responsible for registering and maintaining the domain names on the World Wide Web. Until competition in domain name registration was introduced, they were the only ones responsible. Most countries have their own network information center.

INDEXCARD, 7/12
 
Microsoft Corporation

Founded by Bill Gates and Paul Allen and headquartered in Redmond, USA, Microsoft Corporation is today's world-leading developer of personal-computer software systems and applications. As MS-DOS, the first operating system released by Microsoft, before, Windows, its successor, has become the de-facto standard operating system for personal computer. According to critics and following a recent court ruling this is due to unfair competition.

http://www.microsoft.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/4/0,5716,1524+1+1522,00.html

http://www.microsoft.com/
http://www.britannica.com/bcom/eb/article/4/0...
INDEXCARD, 8/12
 
Neighboring rights

Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large.

INDEXCARD, 9/12
 
Blaise Pascal

b. June 19, 1623, Clermont-Ferrand, France
d. August 19, 1662, Paris, France

French mathematician, physicist, religious philosopher, and master of prose. He laid the foundation for the modern theory of probabilities, formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience of God through the heart rather than through reason. The establishment of his principle of intuitionism had an impact on such later philosophers as Jean-Jacques Rousseau and Henri Bergson and also on the Existentialists.

INDEXCARD, 10/12
 
Moral rights

Authors of copyrighted works (besides economic rights) enjoy moral rights on the basis of which they have the right to claim their authorship and require that their names be indicated on the copies of the work and in connection with other uses thereof. Moral rights are generally inalienable and remain with the creator even after he has transferred his economic rights, although the author may waive their exercise.

INDEXCARD, 11/12
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 12/12