Enforcement: Copyright Management and Control Technologies With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of |
|
0 - 1400 A.D. 150 A The Roman smoke signals network consisted of towers within a visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling. For a similar telegraph network in ancient Greece see About 750 In Japan block printing is used for the first time. 868 In China the world's first dated book, the Diamond Sutra, is printed. 1041-1048 In China moveable types made from clay are invented. 1088 The first of the great medieval universities was established in Bologna. At the beginning universities predominantly offered a kind of do-it-yourself publishing service. Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so that you had your own copy of a book, thus enabling you to hold a lecture, too. For further details see History of the Idea of a University, |
|
Biometrics applications: physical access This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel. Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at A gate keeping system for airports relying on digital fingerprint and hand geometry is described at An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles". However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the |
|
Internet, Intranets, Extranets, and Virtual Private Networks With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term Cable TV networks and online services as Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Electronic Communications Networks as |
|
Another Question of Security Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day. Therefore the decision to elect a certain method of enciphering finally is a matter of trust. For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide. The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge. The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy. It is especially the latter that touches the main elements of democracy. for the question of security see: |
|
Challenges for Copyright by ICT: Introduction Traditional copyright and the practice of paying Yet again new technologies have altered the way of how (copyrighted) works are produced, copied, made obtainable and distributed. The emergence of global electronic networks and the increased availability of digitalized intellectual property confront existing copyright with a variety of questions and challenges. Although the combination of several types of works within one larger work or on one data carrier, and the digital format (although this may be a recent development it has been the object of detailed legal scrutiny), as well as networking (telephone and cable networks have been in use for a long time, although they do not permit interactivity) are nothing really new, the circumstance that recent technologies allow the presentation and storage of text, sound and visual information in digital form indeed is a novel fact. Like that the entire information can be generated, altered and used by and on one and the same device, irrespective of whether it is provided online or offline. |
|
Timeline 1600 - 1900 AD 17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card - Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians - the English scientist, magician and astrologer 1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally. 1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code 18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day. 1790's Thomas Jefferson and Robert Patterson invent a wheel cipher 1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs 1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844. 1834 the 1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then 1854 the Playfair cipher is invented by Sir Charles Wheatstone 1859 for the first time a tomographic cipher gets described 1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages 1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army 1895 the invention of the radio changes cryptography-tasks again and makes them even more important |
|
Timeline 1900-1970 AD 1913 the wheel cipher gets re-invented as a strip 1917 - an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys 1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin - Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected 1919 Hugo Alexander Koch invents a rotor cipher machine 1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded 1923 Arthur Scherbius founds an enterprise to construct and finally sell his late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly 1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts 1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939 1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of 1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett - at the same time the British develop the Typex machine, similar to the German Enigma machine 1943 Colossus, a code breaking computer is put into action at Bletchley Park 1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type 1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems 1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ) late 1960's the IBM Watson Research Lab develops the Lucifer cipher 1969 James Ellis develops a system of separate public-keys and private-keys |
|
Intellectual Property: A Definition Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) Industrial Property a) b) c) d) Unfair competition (trade secrets) e) Geographical indications (indications of source and appellations of origin) 2) Copyright The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied. |
|
History: "Indigenous Tradition" In preliterate societies the association of rhythmic or repetitively patterned utterances with supernatural knowledge endures well into historic times. Knowledge is passed from one generation to another. Similar as in the Southern tradition |
|
Feeding the data body |
|
1500 - 1700 A.D. 1588 Agostino Ramelli designed a "reading wheel", which allowed browsing through a large number of documents without moving from one spot to another. The device presented a large number of books - a small library - laid open on lecterns on a kind of ferry-wheel. It allowed skipping chapters and browsing through pages by turning the wheel to bring lectern after lectern before the eyes. Ramelli's reading wheel thus linked ideas and texts and reminds of today's browsing software used to navigate the 1597 The first newspaper is printed in Europe. |
|
Legal Protection: WIPO (World Intellectual Property Organization) Presumably the major player in the field of international Information on WIPO administered agreements in the field of industrial property (Paris Convention for the Protection of Industrial Property (1883), Madrid Agreement Concerning the International Registration of Marks (1891) etc.) can be found on: Information on treaties concerning copyright and neighboring rights (Berne Convention for the Protection of Literary and Artistic Works (1886) etc.) is published on: The most recent multilateral agreement on copyright is the 1996 WIPO Copyright Treaty. Among other things it provides that computer programs are protected as literary works and also introduces the protection of databases, which "... by reason of the selection or arrangement of their content constitute intellectual creations." Furthermore the |
|
Global Data Flows In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy. Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries. This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires. |
|
In Search of Reliable Internet Measurement Data Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible. Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Size and Growth In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known So his statement is a slap in the face of all market researchers stating otherwise. In a certain sense this is ridiculous, because since the inception of the So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the "There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Hosts The Despite the small sample, this method has at least one flaw: Internet Weather Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet Hits, Page Views, Visits, and Users Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed. For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate. In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle. But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and For If you like to play around with Internet statistics instead, you can use Robert Orenstein's Measuring the Density of Measuring the Density of Dodge and Shiode used data on the ownership of IP addresses from |
|
Who owns the Internet and who is in charge? The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet. The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g. Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed. For a detailed report on Internet governance, click here. |
|
Legal Protection: European Union Within the EU's goal of establishing a European single market also An overview of EU activities relating to intellectual property protection is available on the website of the European Commission (DG Internal Market): |
|
Center for Democracy and Technology The Center for Democracy and Technology works to promote democratic values and constitutional liberties in the digital age. With expertise in law, technology, and policy, the Center seeks practical solutions to enhance free expression and privacy in global communications technologies. The Center is dedicated to building consensus among all parties interested in the future of the Internet and other new communications media. http://www.cdt.org |
|
skytale The skytale (pronunciation: ski-ta-le) was a Spartan tool for encryption. It consisted of a piece of wood and a leather-strip. Any communicating party needed exactly the same size wooden stick. The secret message was written on the leather-strip that was wound around the wood, unwound again and sent to the recipient by a messenger. The recipient would rewound the leather and by doing this enciphering the message. |
|
IIPA The International |
|
RSA The best known of the two-key cryptosystems developed in the mid-1980s is the Rivest-Shamir-Adleman (RSA) cryptoalgorithm, which was first published in April, 1977. Since that time, the algorithm has been employed in the most widely-used Internet electronic communications encryption program, |
|
Copyright management information Copyright management information refers to information which identifies a work, the author of a work, the owner of any right in a work, or information about the terms and conditions of the use of a work, and any numbers or codes that represent such information, when any of these items of information are attached to a copy of a work or appear in connection with the communication of a work to the public. |
|
America Online Founded in 1985, America Online is the world's biggest Internet service provider serving almost every second user. Additionally, America Online operates CompuServe, the Netscape Netcenter and several AOL.com portals. As the owner of Netscape, Inc. America Online plays also an important role in the Web browser market. In January 2000 America Online merged with Time Warner, the worlds leading media conglomerate, in a US$ 243,3 billion deal, making America Online the senior partner with 55 percent in the new company. |
|
The Flesh Machine This is the tile of a book by the |
|
Vinton Cerf Addressed as one of the fathers of the Internet, Vinton Cerf together with Robert Kahn developed the In 1992, he co-founded the Today, Vinton Cerf is Senior Vice President for Internet Architecture and Technology at Vinton Cerf's web site: http://www.wcom.com/about_the_company/cerfs_up/ |
|
Computer programming language A computer programming language is any of various languages for expressing a set of detailed instructions for a digital computer. Such a language consists of characters and rules for combining them into symbols and words. |
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Gateway A gateway is a computer supplying point-to-multipoint connections between computer networks. |
|
Sony Corporation Japanese SONY KK, major Japanese manufacturer of consumer electronics products. Headquarters are in Tokyo. The company was incorporated in 1946 and spearheaded Japan's drive to become the world's dominant consumer electronics manufacturer in the late 20th century. The company was one of the first to recognize the potential of the consumer videotape market. In 1972 it formed an affiliate to market its Betamax colour videocassette system. In 1987-88 Sony purchased the CBS Records Group from CBS Inc., thus acquiring the world's largest record company. It followed that purchase with the purchase in 1989 of Columbia Pictures Entertainment Inc. |
|
Leonard M. Adleman Leonard M. Adleman was one of three persons in a team to invent the |
|
Internet Exchanges Internet exchanges are intersecting points between major networks. List of the World's Public Internet exchanges ( |
|
The Internet Engineering Task Force The Internet Engineering Task Force contributes to the evolution of the architecture, the protocols and technologies of the Net by developing new Internet standard specifications. The directors of its functional areas form the Internet Society: |
|
IBM IBM (International Business Machines Corporation) manufactures and develops cumputer hardware equipment, application and sysem software, and related equipment. IBM produced the first PC (Personal Computer), and its decision to make Microsoft DOS the standard operating system initiated Microsoft's rise to global dominance in PC software. Business indicators: 1999 Sales: $ 86,548 (+ 7,2 % from 1998) Market capitalization: $ 181 bn Employees: approx. 291,000 Corporate website: |
|