body and mind as defects In an increasingly technisised world where technology has also become a determinant of value-free values, mind and body are increasingly considered as "imperfect" compared to the brilliant designs of technology. While for centuries the "weakness" of the human flesh has been the object of lamentations, the 21st century seems set to transform the genre of tragedy into a sober technological project of improvement. Within this project, men and women receive the status of "risk factor" which potentially destabilises technological systems, a circumstance which calls for correction and control measures. Two main ways of checking the risk of "human error", as well as inefficiency, irrationality, selfishness, emotional turbulence, and other weaknesses of human beings: by minimizing human participation in technological processes, and, to an increasing extent, by technically eliminating such risk factors in human beings themselves. Human beings, once considering themselves as the "crown of creation" or the "masters of the world" are reducing themselves to the "human factor" in globally networked technical systems, that factor which still escapes reliable calculation and which, when interacting with fast and potent technical environments, is a source of imperfection. For the human mind and body to perfect itself - to adapt itself to the horizon of perfection of science and technology - takes long time periods of discipline, learning, even biological evolution. In the calculating thinking required in highly technisised context, mind and body inevitably appear as deficient compared to a technology which, unlike the human organism, has the potential of fast and controlled "improvement". Surely, the human organism has always been prey to defects, to "illnesses" and "disablement". Disease has therefore been one of the main motivations behind the development of Bio-ITs: Bio-ITs are being developed to help the blind get their eyesight back, the deaf to hear, the lame to walk, the depressed to be happy. Such medical applications of Bio-ITs are nothing essentially new: Captain Silver's crunch, the wheelchair, a tooth filling save the same basic purpose of correcting a physical deficiency. But there is a much wider scope to this new development, in which the "normal" biological condition of a human being, such as proneness to death, forgetfulness, aging, inefficiency, solitude, or boredom are understood as defects which can and should be corrected. The use of ITs to overcome such "biological" constraints is often seen as the "ultimate" technological advance, even if the history of utopian visions connected to technological innovation is as old as it is rife with surprise, disappointment, and disaster. |
|
Biometric applications: surveillance Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals. Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily. Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned. |
|
Global Data Flows In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy. Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries. This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires. |
|
History: "Indigenous Tradition" In preliterate societies the association of rhythmic or repetitively patterned utterances with supernatural knowledge endures well into historic times. Knowledge is passed from one generation to another. Similar as in the Southern tradition |
|
Terrestrial antennas Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks. The implementation of the |
|
Neighboring rights Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large. |
|
Wide Application Protocol (WAP) The WAP (Wireless Application Protocol) is a specification for a set of communication protocols to standardize the way that wireless devices, such as cellular telephones and radio transceivers, can be used for Internet access, including While Internet access has been possible in the past, different manufacturers have used different technologies. In the future, devices and service systems that use WAP will be able to interoperate. Source: Whatis.com |
|
Wide Area Network (WAN) A Wide Area Network is a wide area proprietary network or a network of local area networks. Usually consisting of computers, it may consist of cellular phones, too. |
|
Satellites Communications satellites are relay stations for radio signals and provide reliable and distance-independent high-speed connections even at remote locations without high-bandwidth infrastructure. On point-to-point transmission, the transmission method originally employed on, satellites face increasing competition from In the future, satellites will become stronger, cheaper and their orbits will be lower; their services might become as common as satellite TV is today. For more information about satellites, see How Satellites Work ( |
|