Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 1/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Basics: Protected Persons

Generally copyright vests in the author of the work. Certain national laws provide for exceptions and, for example, regard the employer as the original owner of a copyright if the author was, when the work was created, an employee and employed for the purpose of creating that work. In the case of some types of creations, particularly audiovisual works, several national laws provide for different solutions to the question that should be the first holder of copyright in such works.

Many countries allow copyright to be assigned, which means that the owner of the copyright transfers it to another person or entity, which then becomes its holder. When the national law does not permit assignment it usually provides the possibility to license the work to someone else. Then the owner of the copyright remains the holder, but authorizes another person or entity to exercise all or some of his rights subject to possible limitations. Yet in any case the "moral rights" always belong to the author of the work, whoever may be the owner of the copyright (and therefore of the "economic rights").


TEXTBLOCK 2/8 // URL: http://world-information.org/wio/infostructure/100437611725/100438659527
 
Private data bunkers

On the other hand are the data bunkers of the private sector, whose position is different. Although these are fast-growing engines of data collection with a much greater degree of dynamism, they may not have the same privileged position - although one has to differentiate among the general historical and social conditions into which a data bunker is embedded. For example, it can safely be assumed that the databases of a large credit card company or bank are more protected than the bureaucracies of small developing countries.

Private data bunkers include

    Banks

    Building societies

    Credit bureaus

    Credit card companies

    Direct marketing companies

    Insurance companies

    Telecom service providers

    Mail order stores

    Online stores


TEXTBLOCK 3/8 // URL: http://world-information.org/wio/infostructure/100437611761/100438659735
 
Feeding the data body

TEXTBLOCK 4/8 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
 
Examples of Mainly Corporate Funded Think Tanks: Manhattan Institute

The Manhattan Institute, founded by William Casey, who later became President Reagan's CIA director, besides subsidies from a number of large conservative foundations has gained funding from such corporate sources as: The Chase Manhattan Bank, Citicorp, Time Warner, Procter & Gamble and State Farm Insurance, as well as the Lilly Endowment and philantropic arms of American Express, Bristol-Myers Squibb, CIGNA and Merrill Lynch. Boosted by major firms, the Manhattan Institute budget reached US$ 5 million a year by the early 1990s.

TEXTBLOCK 5/8 // URL: http://world-information.org/wio/infostructure/100437611704/100438658245
 
Online data capturing

Hardly a firm today can afford not to engage in electronic commerce if it does not want to be swept out of business by competitors. "Information is everything" has become something like the Lord's prayer of the New Economy. But how do you get information about your customer online? Who are the people who visit a website, where do they come from, what are they looking for? How much money do they have, what might they want to buy? These are key questions for a company doing electronic business. Obviously not all of this information can be obtained by monitoring the online behaviour of web users, but there are always little gimmicks that, when combined with common tracking technologies, can help to get more detailed information about a potential customer. These are usually online registration forms, either required for entry to a site, or competitions, sometimes a combination of the two. Obviously, if you want to win that weekend trip to New York, you want to provide your contact details.

The most common way of obtaining information about a user online is a cookie. However, a cookie by itself is not sufficient to identify a user personally. It merely identifies the computer to the server by providing its IP number. Only combined with other data extraction techniques, such as online registration, can a user be identified personally ("Register now to get the full benefit of xy.com. It's free!")

But cookies record enough information to fine-tune advertising strategies according to a user's preferences and interests, e.g. by displaying certain commercial banners rather than others. For example, if a user is found to respond to a banner of a particular kind, he / she may find two of them at the next visit. Customizing the offers on a website to the particular user is part of one-to-one marketing, a type of direct marketing. But one-to-one marketing can go further than this. It can also offer different prices to different users. This was done by Amazon.com in September 2000, when fist-time visitors were offered cheaper prices than regular customers.

One-to-one marketing can create very different realities that undermine traditional concepts of demand and supply. The ideal is a "frictionless market", where the differential between demand and supply is progressively eliminated. If a market is considered a structure within which demand / supply differentials are negotiated, this amounts to the abolition of the established notion of the nature of a market. Demand and supply converge, desire and it fulfilment coincide. In the end, there is profit without labour. However, such a structure is a hermetic structure of unfreedom.

It can only function when payment is substituted by credit, and the exploitation of work power by the exploitation of data. In fact, in modern economies there is great pressure to increase spending on credit. Using credit cards and taking up loans generates a lot of data around a person's economic behaviour, while at the same restricting the scope of social activity and increasing dependence. On the global level, the consequences of credit spirals can be observed in many of the developing countries that have had to abandon most of their political autonomy. As the data body economy advances, this is also the fate of people in western societies when they are structurally driven into credit spending. It shows that data bodies are not politically neutral.

The interrelation between data, profit and unfreedom is frequently overlooked by citizens and customers. Any company in a modern economy will apply data collecting strategies for profit, with dependence and unfreedom as a "secondary effect". The hunger for data has made IT companies eager to profit from e-business rather resourceful. "Getting to know the customer" - this is a catchphrase that is heard frequently, and which suggests that there are no limits to what a company may want to about a customer. In large online shops, such as amazon.com, where customer's identity is accurately established by the practice of paying with credit cards, an all business happens online, making it easy for the company to accurately profile the customers.

But there are more advanced and effective ways of identification. The German company Sevenval has developed a new way of customer tracking which works with "virtual domains". Every visitor of a website is assigned an 33-digit identification number which the browser understands as part of the www address, which will then read something like http://XCF49BEB7E97C00A328BF562BAAC75FB2.sevenval.com. Therefore, this tracking method, which is advertised by Sevenval as a revolutionary method capable of tracking the exact and complete path of a user on a website, can not be simple switched off. In addition, the method makes it possible for the identity of a user can travel with him when he / she visits one of the other companies linked to the site in question. As in the case of cookies, this tracking method by itself is not sufficient to identify a user personally. Such an identification only occurs once a customer pays with a credit card, or decides to participate in a draw, or voluntarily completes a registration form.

Bu there are much less friendly ways of extracting data from a user and feeding the data body. Less friendly means: these methods monitor users in situations where the latter are likely not to want to be monitored. Monitoring therefore takes place in a concealed manner. One of these monitoring methods are so-called web bugs. These are tiny graphics, not more than 1 x 1 pixel in size, and therefore invisible on a screen, capable of monitoring an unsuspecting user's e-mails or movements on a website. Leading corporations such as Barnes and Noble, eToys, Cooking.com, and Microsoft have all used web bugs in advertising campaigns. Richard Smith has compiled a web bugs FAQ site that contains detailed information and examples of web bugs in use.

Bugs monitoring users have also been packaged in seemingly harmless toys made available on the Internet. For example, Comet Systems offers cursor images which have been shown to collect user data and send them back to the company's server. These little images replace the customary white arrow of a mouse with a little image of a baseball, a cat, an UFO, etc. large enough to carry a bug collecting user information. The technology is offered as a marketing tool to companies looking for a "fun, new way to interact with their audience".

The cursor image technology relies on what is called a GUID (global unique identifier). This is an identification number which is assigned to a customer at the time of registration, or when downloading a product. Many among the online community were alarmed when in 1999 it was discovered that Microsoft assigned GUIDS without their customer's knowledge. Following protests, the company was forced to change the registration procedure, assuring that under no circumstances would these identification numbers be used for tracking or marketing.

However, in the meantime, another possible infringement on user anonymity by Microsoft was discovered, when it as found out that MS Office documents, such as Word, Excel or Powerpoint, contain a bug that is capable of tracking the documents as they are sent through the net. The bug sends information about the user who opens the document back to the originating server. A document that contains the bug can be tracked across the globe, through thousands of stopovers. In detailed description of the bug and how it works can be found at the Privacy Foundation's website. Also, there is an example of such a bug at the Privacy Center of the University of Denver.

Of course there are many other ways of collecting users' data and creating appropriating data bodies which can then be used for economic purposes. Indeed, as Bill Gates commented, "information is the lifeblood of business". The electronic information networks are becoming the new frontier of capitalism.

TEXTBLOCK 6/8 // URL: http://world-information.org/wio/infostructure/100437611761/100438659686
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 7/8 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Challenges for Copyright by ICT: Internet Service Providers

ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning caching, information residing on systems or networks of ISPs at the directions of users and transitory communication.

Caching

Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated.

Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts).

Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the DMCA or the proposed EU Directive on copyright and related rights in the information society (amended version) have provided exceptions for ISPs concerning particular acts of reproduction that are considered technical copies (caching). Nevertheless the exemption of liability for ISPs only applies if they meet a variety of specific conditions. In the course of the debate about caching also suggestions have been made to subject it to an implied license or fair use defense or make it (at least theoretically) actionable.

Information Residing on Systems or Networks at the Direction of Users

ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances.

Transitory Communication

In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions.

For more information on copyright (intellectual property) related problems of ISPs (BBSs (Bulletin Board Service Operators), systems operators and other service providers) see:

Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Intellectual Property and Technology Forum. June 4, 1999.

Teran, G.: Who is Vulnerable to Suit? ISP Liability for Copyright Infringement. November 2, 1999.

TEXTBLOCK 8/8 // URL: http://world-information.org/wio/infostructure/100437611725/100438659550
 
First Monday

An English language peer reviewed media studies journal based in Denmark.

http://firstmonday.dk

INDEXCARD, 1/9
 
1996 WIPO Copyright Treaty (WCT)

The 1996 WIPO Copyright Treaty, which focused on taking steps to protect copyright "in the digital age" among other provisions 1) makes clear that computer programs are protected as literary works, 2) the contracting parties must protect databases that constitute intellectual creations, 3) affords authors with the new right of making their works "available to the public", 4) gives authors the exclusive right to authorize "any communication to the public of their works, by wire or wireless means ... in such a way that members of the public may access these works from a place and at a time individually chosen by them." and 5) requires the contracting states to protect anti-copying technology and copyright management information that is embedded in any work covered by the treaty. The WCT is available on: http://www.wipo.int/documents/en/diplconf/distrib/94dc.htm



http://www.wipo.int/documents/en/diplconf/dis...
INDEXCARD, 2/9
 
Internet Architecture Board

On behalf of the Internet Society, the Internet Architecture Board oversees the evolution of the architecture, the standards and the protocols of the Net.

Internet Society: http://www.isoc.org/iab

http://www.isoc.org/
INDEXCARD, 3/9
 
Terrestrial antennas

Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks.

The implementation of the Wide Application Protocol (WAP) makes the wireless access to Internet services as E-Mail and even the World Wide Web via cellular phones convenient. Therefore microwave transmission systems become increasingly important.

INDEXCARD, 4/9
 
CIA

CIA's mission is to support the President, the National Security Council, and all officials who make and execute U.S. national security policy by: Providing accurate, comprehensive, and timely foreign intelligence on national security topics; Conducting counterintelligence activities, special activities, and other functions related to foreign intelligence and national security, as directed by the President. To accomplish its mission, the CIA engages in research, development, and deployment of high-leverage technology for intelligence purposes. As a separate agency, CIA serves as an independent source of analysis on topics of concern and works closely with the other organizations in the Intelligence Community to ensure that the intelligence consumer--whether Washington policymaker or battlefield commander--receives the adaequate intelligence information.

http://www.cia.gov

INDEXCARD, 5/9
 
Optical communication system by Aeneas Tacitus, 4th century B.C.

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook.

With communication separated from transportation, the distant became near.

Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

http://www.smith.edu/hsc/museum/ancient_inven...
INDEXCARD, 6/9
 
Telnet

Telnet allows you to login remotely on a computer connected to the Internet.

INDEXCARD, 7/9
 
Microsoft Network

Microsoft Network is the online service from Microsoft Corporation. Although offering direct access to the Internet, mainly proprietary content for entertainment purposes is offered. Best viewed with Microsoft's Internet Explorer.

http://www.msn.com

INDEXCARD, 8/9
 
Caching

Caching is a mechanism that attempts to decrease the time it takes to retrieve data by storing a copy at a closer location.

INDEXCARD, 9/9