Digital Signatures, Timestamps etc Most computer systems are far from being secure. A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data. It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector. Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions. If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool. In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too. A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged. For more terms of cryptography and more information see: |
|
Basics: Protected Works Usually the subject matter of copyright is described as "literary and artistic works" - original creations in the fields of literature and arts. Such works may be expressed in words, symbols, pictures, music, three-dimensional objects, or combinations thereof. Practically all national copyright laws provide for the protection of the following types of works: Literary works: novels, poems dramatic works and any other writings, whether published or unpublished; in most countries also computer programs and "oral works" Musical works Artistic works: whether two-dimensional or three-dimensional; irrespective of their content and destination Maps and technical drawings Photographic works: irrespective of the subject matter and the purpose for which made Audiovisual works: irrespective of their purpose, genre, length, method employed or technical process used Some copyright laws also provide for the protection of choreographic works, derivative works (translations, adaptions), collections (compilations) of works and mere data (data bases); collections where they, by reason of the selection and arrangement of the contents, constitute intellectual creations. Furthermore in some countries also "works of applied art" (furniture, wallpaper etc.) and computer programs (either as literary works or independently) constitute copyrightable matter. Under certain national legislations the notion "copyright" has a wider meaning than "author's rights" and, in addition to literary and artistic works, also extends to the producers of sound recordings, the broadcasters of broadcasts and the creators of distinctive typographical arrangements of publications. |
|
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights) Another important multilateral treaty concerned with The complete TRIPS agreement can be found on: |
|
Key-Systems As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce. Key cryptosystems try to provide more privacy. symmetric-key cryptosystems: The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it? In former times messengers or pigeons were doing the exchange of those keys. Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated. Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms. some symmetric-key systems are: - DES (Data Encryption Standard), the standard for credit cards - Triple-DES, which is a variation of DES, encrypting the plaintext three times. - IDEA (International Data Encryption Standard) - blowfish encryption algorithm, which is said to be faster than DES and IDEA Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not. For further information see: |
|
History: Communist Tradition Following the communist revolutions of the 20th century all "means of production" became the property of the state as representative of "the masses". Private property ceased to exist. While moral rights of the creator were recognized and economic rights acknowledged with a one-time cash award, all subsequent rights reverted to the state. With the transformation of many communist countries to a market system most of them have now introduced laws establishing markets in intellectual property rights. Still the high rate of piracy reflects a certain lack of legal tradition. |
|
Roman smoke telegraph network, 150 A.D. The Roman smoke signals network consisted of towers within visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling. For a similar telegraph network in ancient Greece see |
|
Artificial Intelligence Artificial Intelligence is concerned with the simulation of human thinking and emotions in information technology. AI develops "intelligent systems" capable, for example, of learning and logical deduction. AI systems are used for creatively handling large amounts of data (as in data mining), as well as in natural speech processing and image recognition. AI is also used as to support Yahoo AI sites: MIT AI lab: |
|
PGP A |
|
Writing Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets are used for administrative purposes. As an instrument for the administrative bodies of early empires, who began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to a few. Being more or less separated tasks, writing and calculating converge in today's computers. Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China. |
|
Moral rights Authors of copyrighted works (besides |
|
Calculator Calculators are machines for automatically performing arithmetical operations and certain mathematical functions. Modern calculators are descendants of a digital arithmetic machine devised by |
|