Who owns the Internet and who is in charge?

The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet.
The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g.
Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers.
Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily.
Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed.
For a detailed report on Internet governance, click here.

TEXTBLOCK 1/10 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
 
Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 2/10 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights)

Another important multilateral treaty concerned with intellectual property rights is the TRIPS agreement, which was devised at the inauguration of the Uruguay Round negotiations of the WTO in January 1995. It sets minimum standards for the national protection of intellectual property rights and procedures as well as remedies for their enforcement (enforcement measures include the potential for trade sanctions against non-complying WTO members). The TRIPS agreement has been widely criticized for its stipulation that biological organisms be subject to intellectual property protection. In 1999, 44 nations considered it appropriate to treat plant varieties as intellectual property.

The complete TRIPS agreement can be found on: http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm

TEXTBLOCK 3/10 // URL: http://world-information.org/wio/infostructure/100437611725/100438659758
 
Internet, Intranets, Extranets, and Virtual Private Networks

With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are proprietary networks.

Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term "proprietary networks" into terms to be explained and speak of Intranets, Extranets, and Virtual Private Networks.

Cable TV networks and online services as Europe Online, America Online, and Microsoft Network are also proprietary networks. Although their services resemble Internet services, they offer an alternative telecommunication infrastructure with access to Internet services for their subscribers.
America Online is selling its service under the slogan "We organize the Web for you!" Such promises are more frightening than promising because "organizing" is increasingly equated with "filtering" of seemingly objectionable messages and "rating" of content. For more information on these issues, click here If you want to know more about the technical nature of computer networks, here is a link to the corresponding article in the Encyclopaedia Britannica.

Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Society for Worldwide Interbank Financial Telecommunication (SWIFT). According to SWIFT, in 1998 the average daily value of payments messages was estimated to be above U$ 2 trillion.

Electronic Communications Networks as Instinet force stock exchanges to redefine their positions in trading of equities. They offer faster trading at reduced costs and better prices on trades for brokers and institutional investors as mutual funds and pension funds. Last, but not least clients are not restricted to trading hours and can trade anonymously and directly, thereby bypassing stock exchanges.

TEXTBLOCK 4/10 // URL: http://world-information.org/wio/infostructure/100437611791/100438658384
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 5/10 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Enforcement: Copyright Management and Control Technologies

With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of copyright management systems. Technological protection for their works, the copyright industry argues, is necessary to prevent widespread infringement, thus giving them the incentive to make their works available online. In their view the ideal technology should be "capable of detecting, preventing, and counting a wide range of operations, including open, print, export, copying, modifying, excerpting, and so on." Additionally such systems could be used to maintain "records indicating which permissions have actually been granted and to whom".

TEXTBLOCK 6/10 // URL: http://world-information.org/wio/infostructure/100437611725/100438659674
 
1960s - 1970s: Expert Systems Gain Attendance

The concept of expert systems dates back to the 1960s but first gained prominence in the 1970s. Conclusive for this development were the insights of the Stanford University professor Edward Feigenbaum, who in 1977 demonstrated that the problem-solving capacity of a computer program rather is a result of the knowledge it posses, than of the applied programming techniques and formalisms.

Expert systems were designed to mimic the knowledge and reasoning capabilities of a human specialist in a given domain by using (top down) artificial intelligence techniques. Made possible by the large storage capacity of the computers at the time, expert systems had the potential to interpret statistics and formulate rules. An initial use of expert systems was to diagnose and treat human physical disorders, but as its applications in the market place were extensive over the course of the following years they were also employed in fields such as stock market forecast, taxation, chemistry, and geology.

TEXTBLOCK 7/10 // URL: http://world-information.org/wio/infostructure/100437611663/100438659454
 
The Romans

The Romans can be called the great inventors of myths with the purpose of propaganda. Think of Caesar, Augustus or Nero. Caesar wrote his war-documentation by using incredible (e.g. the numbers of hostile soldiers) but he also emphasized the barbarity of the foe, creating images of hatred. People back at home had to believe these manipulative stories.
Or Augustus: he reunited the Roman Empire; part of his power was due to huge efforts in propaganda, visible e.g. in the mass of coins showing his face, being sent all over the empire. He understood very well, that different cultures used different symbols - and he used them for his propaganda.
Politically the Roman army was an important factor. Propaganda in that case was used for the soldiers on the one hand, but on the other hand also for demonstrating the power of the army to the people, so they could trust in its strength. Even then security was an essential factor of politics. As long as the army functioned, the Roman Empire did as well (Taylor, Munitions of the Mind, p. 48).

TEXTBLOCK 8/10 // URL: http://world-information.org/wio/infostructure/100437611661/100438658320
 
2000 A.D.

2000
Convergence of telephony, audiovisual technologies and computing

Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence".

Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories.

Convergence and Regulatory Institutions

Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, America Online, the world's largest online service provider, merged with Time Warner, the world's largest media corporation. For such corporations the classical approach to regulation - separate institutions regulate separate markets - is no longer appropriate, because the institutions' activities necessarily overlap. The current challenges posed to these institutions are not solely due to the convergence of communication and media systems made possible by digital technologies; they are also due to the liberalization and internationalization of the electronic communications sector. For regulation to be successful, new categorizations and supranational agreements are needed.
For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or http://www.soe.oeaw.ac.at/WP01JustLatzer.doc.

TEXTBLOCK 9/10 // URL: http://world-information.org/wio/infostructure/100437611796/100438659802
 
Virtual cartels; mergers

In parallel to the deregulation of markets, there has been a trend towards large-scale mergers which ridicules dreams of increased competition.

Recent mega-mergers and acquisitions include

SBC Communications - Ameritech, $ 72,3 bn

Bell Atlantic - GTE, $ 71,3

AT&T - Media One, $ 63,1

AOL - Time Warner, $ 165 bn

MCI Worldcom - Spring, $ 129 bn

The total value of all major mergers since the beginnings of the 1990s has been 20 trillion Dollars, 2,5 times the size of the USA's GIP.

The AOL- Time Warner reflects a trend which can be observed everywhere: the convergence of the ICT and the content industries. This represents the ultimate advance in complete market domination, and a alarming threat to independent content.

"Is TIME going to write something negative about AOL? Will AOL be able to offer anything other than CNN sources? Is the Net becoming as silly and unbearable as television?"

(Detlev Borchers, journalist)

TEXTBLOCK 10/10 // URL: http://world-information.org/wio/infostructure/100437611709/100438658959
 
Noam Chomsky

Noam Chomsky (* 1928) works as a U.S.-linguist, writer, political activist and journalist. He is teaching at the MIT (= Massachusetts Institute of Technology) as a professor of linguistics, specializing on structural grammar and the change of language through technology and economy - and the social results of that. When he stood up against the Vietnam War he became famous as a "radical leftist". Since then he has been one of the most famous critics of his country.

INDEXCARD, 1/5
 
Citicorp/Citibank

American holding company (formerly (1967-74) First National City Corporation),
incorporated in 1967, with the City Bank of New York, National Association (a bank tracing to 1812), as its principal subsidiary. The latter's name changed successively to First National City Bank in 1968 and to Citibank, N.A. (i.e., National Association), in 1976. Citicorp was the holding company's popular and trade name from its inception but became the legal name only in 1974. Headquarters are in New York City.

INDEXCARD, 2/5
 
Chase Manhattan

American holding company incorporated Jan. 22, 1969, to acquire, as its main
subsidiary, The Chase Manhattan Bank, NA, and to develop other related financial services and operations. The Chase Manhattan Bank itself had resulted from the merger in 1955 of the Bank of the Manhattan Company (founded 1799) and The Chase National Bank (founded 1877). Its headquarters are in New York City.

INDEXCARD, 3/5
 
Reuters Group plc

Founded in 1851 in London, Reuters is the world's largest news and television agency with 1,946 journalists, photographers and camera operators in 183 bureaus serving newspapers, other news agencies, and radio and television broadcasters in 157 countries.
In addition to its traditional news-agency business, over its network Reuters provides financial information and a wide array of electronic trading and brokering services to banks, brokering houses, companies, governments, and individuals worldwide.

http://www.reuters.com

INDEXCARD, 4/5
 
Napoleon

Napoleon I. (1769-1821) was French King from 1804-1815.
He is regarded as the master of propaganda and disinformation of his time. Not only did he play his game with his own people but also with all European nations. And it worked as long as he managed to keep up his propaganda and the image of the winner.
Part of his already nearly commercial ads was that his name's "N" was painted everywhere.
Napoleon understood the fact that people believe what they want to believe - and he gave them images and stories to believe. He was extraordinary good in black propaganda.
Censorship was an element of his politics, accompanied by a tremendous amount of positive images about himself.
But his enemies - like the British - used him as a negative image, the reincarnation of the evil (a strategy still very popular in the Gulf-War and the Kosovo-War) (see Taylor, Munitions of the Mind p. 156/157).

INDEXCARD, 5/5