Key Recovery Systems

As stated before the sense of cryptography is a properly designed cryptosystem making it essentially impossible to recover encrypted data without any knowledge of the used key. The issue of lost keys and the being-locked-out from one's own data as a consequence favors key recovery systems. On the other hand the counter argument is confidentiality: as soon as a possibility to recover a key is provided, the chances for abuses grow.
Finally it is the state that does not want to provide too much secrecy. On the contrary. During the last 20 years endless discussions about the state's necessity and right to restrict private cryptography have taken place, as the governments rarely care for the benefit of private users if they believe in catching essential informations about any kind of enemy, hence looking for unrestricted access to all keys.

The list of "key recovery," "key escrow," and "trusted third-party" as encryption requirements, suggested by governmental agencies, covers all the latest developments and inventions in digital technology.
At the same time the NSA, one of the world's most advanced and most secret enterprises for cryptography, worked hard in getting laws through to forbid the private use of strong encryption in one way or the other. Still, it is also organizations like this one that have to admit that key recovery systems are not without any weaknesses, as the U.S. Escrowed Encryption Standard, the basis for the famous and controversially discussed Clipper Chip, showed. The reason for those weaknesses is the high complexity of those systems.

Another aspect is that key recovery systems are more expensive and certainly much less secure than other systems. So, why should anyone use them?

In that context, one has to understand the legal framework for the use of cryptography, a strict framework in fact, being in high contradiction to the globalised flow of communication.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659037
 
Late 1960s - Early 1970s: Third Generation Computers

One of the most important advances in the development of computer hardware in the late 1960s and early 1970s was the invention of the integrated circuit, a solid-state device containing hundreds of transistors, diodes, and resistors on a tiny silicon chip. It made possible the production of large-scale computers (mainframes) of higher operating speeds, capacity, and reliability at significantly lower costs.

Another type of computer developed at the time was the minicomputer. It profited from the progresses in microelectronics and was considerably smaller than the standard mainframe, but, for instance, powerful enough to control the instruments of an entire scientific laboratory. Furthermore operating systems, that allowed machines to run many different programs at once with a central program that monitored and coordinated the computer's memory, attained widespread use.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659498
 
skytale

The skytale (pronunciation: ski-ta-le) was a Spartan tool for encryption. It consisted of a piece of wood and a leather-strip. Any communicating party needed exactly the same size wooden stick. The secret message was written on the leather-strip that was wound around the wood, unwound again and sent to the recipient by a messenger. The recipient would rewound the leather and by doing this enciphering the message.

INDEXCARD, 1/2
 
National Science Foundation (NSF)

Established in 1950, the National Science Foundation is an independent agency of the U.S. government dedicated to the funding in basic research and education in a wide range of sciences and in mathematics and engineering. Today, the NSF supplies about one quarter of total federal support of basic scientific research at academic institutions.

http://www.nsf.gov

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/0/0,5716,2450+1+2440,00.html

http://www.nsf.gov/
INDEXCARD, 2/2