Late 1950s - Early 1960s: Second Generation Computers
An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.
Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.
Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.
|
TEXTBLOCK 1/1 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
|
|
Industrial design
Industrial design refers to the ornamental aspect of a useful article which may constitute of two or three-dimensional elements. To be qualified for intellectual property protection the design must be novel or original. Protection can be obtained through registration in a government office and usually is given for 10 to 15 years.
|
INDEXCARD, 1/2
|
|
User tracking
User tracking is a generic term that covers all the techniques of monitoring the movements of a user on a web site. User tracking has become an essential component in online commerce, where no personal contact to customers is established, leaving companies with the predicament of not knowing who they are talking to. Some companies, such as Red Eye, Cyber Dialogue, and SAS offer complete technology packages for user tracking and data analysis to online businesses. Technologies include software solutions such as e-mine, e-discovery, or WebHound
Whenever user tracking is performed without the explicit agreement of the user, or without laying open which data are collected and what is done with them, considerable privacy concerns have been raised.
http://www.redeye.co.uk/
http://www.cyberdialogue.com/
http://www.sas.com/
http://www.spss.com/emine/
http://www.sas.com/solutions/e-discovery/inde...
http://www.sas.com/products/webhound/index.ht...
http://www.linuxcare.com.au/mbp/meantime/
|
INDEXCARD, 2/2
|
|